Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Zero-Sum Linear Quadratic Games with Improved Sample Complexity and Last-Iterate Convergence (2309.04272v3)

Published 8 Sep 2023 in eess.SY, cs.GT, cs.LG, and cs.SY

Abstract: Zero-sum Linear Quadratic (LQ) games are fundamental in optimal control and can be used (i)~as a dynamic game formulation for risk-sensitive or robust control and (ii)~as a benchmark setting for multi-agent reinforcement learning with two competing agents in continuous state-control spaces. In contrast to the well-studied single-agent linear quadratic regulator problem, zero-sum LQ games entail solving a challenging nonconvex-nonconcave min-max problem with an objective function that lacks coercivity. Recently, Zhang et al. showed that an~$\epsilon$-Nash equilibrium (NE) of finite horizon zero-sum LQ games can be learned via nested model-free Natural Policy Gradient (NPG) algorithms with poly$(1/\epsilon)$ sample complexity. In this work, we propose a simpler nested Zeroth-Order (ZO) algorithm improving sample complexity by several orders of magnitude and guaranteeing convergence of the last iterate. Our main results are two-fold: (i) in the deterministic setting, we establish the first global last-iterate linear convergence result for the nested algorithm that seeks NE of zero-sum LQ games; (ii) in the model-free setting, we establish a~$\widetilde{\mathcal{O}}(\epsilon{-2})$ sample complexity using a single-point ZO estimator. For our last-iterate convergence results, our analysis leverages the Implicit Regularization (IR) property and a new gradient domination condition for the primal function. Our key improvements in the sample complexity rely on a more sample-efficient nested algorithm design and a finer control of the ZO natural gradient estimation error utilizing the structure endowed by the finite-horizon setting.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiduan Wu (2 papers)
  2. Anas Barakat (13 papers)
  3. Ilyas Fatkhullin (14 papers)
  4. Niao He (91 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.