2000 character limit reached
Almost partitioning every $2$-edge-coloured complete $k$-graph into $k$ monochromatic tight cycles (2309.04218v2)
Published 8 Sep 2023 in math.CO
Abstract: A $k$-uniform tight cycle is a $k$-graph with a cyclic order of its vertices such that every $k$ consecutive vertices from an edge. We show that for $k\geq 3$, every red-blue edge-coloured complete $k$-graph on $n$ vertices contains $k$ vertex-disjoint monochromatic tight cycles that together cover $n - o(n)$ vertices.
- P. Allen. Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles. Combin. Probab. Comput., 17(4):471–486, 2008.
- Tight cycles and regular slices in dense hypergraphs. J. Combin. Theory Ser. A, 149:30–100, 2017.
- The chromatic number of Kneser hypergraphs. Trans. Amer. Math. Soc., 298(1):359–370, 1986.
- Partitioning 2-edge-colored graphs by monochromatic paths and cycles. Combinatorica, 34(5):507–526, 2014.
- S. Bessy and S. Thomassé. Partitioning a graph into a cycle and an anticycle, a proof of Lehel’s conjecture. J. Combin. Theory Ser. B, 100(2):176–180, 2010.
- Partitioning edge-colored hypergraphs into few monochromatic tight cycles. SIAM J. Discrete Math., 34(2):1460–1471, 2020.
- Almost partitioning 2-colored complete 3-uniform hypergraphs into two monochromatic tight or loose cycles. J. Graph Theory, 91(1):5–15, 2019.
- S. Bustamante and M. Stein. Partitioning 2-coloured complete k𝑘kitalic_k-uniform hypergraphs into monochromatic ℓℓ\ellroman_ℓ-cycles. European J. Combin., 71:213–221, 2018.
- L. DeBiasio and L. L. Nelsen. Monochromatic cycle partitions of graphs with large minimum degree. J. Combin. Theory Ser. B, 122:634–667, 2017.
- Vertex coverings by monochromatic cycles and trees. J. Combin. Theory Ser. B, 51(1):90–95, 1991.
- D. Gale. The game of Hex and the Brouwer fixed-point theorem. Amer. Math. Monthly, 86(10):818–827, 1979.
- Partitioning 2222-coloured complete 3333-uniform hypergraphs into two monochromatic tight cycles. In preparation.
- L. Gerencsér and A. Gyárfás. On Ramsey-type problems. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 10:167–170, 1967.
- A. Gyárfás. Vertex coverings by monochromatic paths and cycles. J. Graph Theory, 7(1):131–135, 1983.
- A. Gyárfás. Vertex covers by monochromatic pieces—a survey of results and problems. Discrete Math., 339(7):1970–1977, 2016.
- A. Gyárfás and J. Lehel. A Ramsey-type problem in directed and bipartite graphs. Period. Math. Hungar., 3(3-4):299–304, 1973.
- An improved bound for the monochromatic cycle partition number. J. Combin. Theory Ser. B, 96(6):855–873, 2006.
- A. Gyárfás and G. N. Sárközy. Monochromatic path and cycle partitions in hypergraphs. Electron. J. Combin., 20(1), 2013.
- Minimum degree conditions for monochromatic cycle partitioning. J. Combin. Theory Ser. B, 146:96–123, 2021.
- S. Letzter. Monochromatic cycle partitions of 2-coloured graphs with minimum degree 3n/43𝑛43n/43 italic_n / 4. Electron. J. Combin., 26(1), 2019.
- A. Lo and V. Pfenninger. Towards Lehel’s conjecture for 4-uniform tight cycles. Electron. J. Combin., 30(1), 2023.
- T. Łuczak. R(Cn,Cn,Cn)≤(4+o(1))n𝑅subscript𝐶𝑛subscript𝐶𝑛subscript𝐶𝑛4𝑜1𝑛R(C_{n},C_{n},C_{n})\leq(4+o(1))nitalic_R ( italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≤ ( 4 + italic_o ( 1 ) ) italic_n. J. Combin. Theory Ser. B, 75(2):174–187, 1999.
- Partitioning two-coloured complete graphs into two monochromatic cycles. Combin. Probab. Comput., 7(4):423–436, 1998.
- A. Pokrovskiy. Partitioning edge-coloured complete graphs into monochromatic cycles and paths. J. Combin. Theory Ser. B, 106:70–97, 2014.
- A. Pokrovskiy. Partitioning a graph into a cycle and a sparse graph. Discrete Math., 346(1), 2023.
- G. N. Sárközy. Improved monochromatic loose cycle partitions in hypergraphs. Discrete Math., 334:52–62, 2014.
- M. Simonovits and E. Szemerédi. Embedding graphs into larger graphs: results, methods, and problems. In Building bridges II—mathematics of László Lovász, volume 28 of Bolyai Soc. Math. Stud., pages 445–592. Springer, Berlin, 2019.
- M. Stein. Monochromatic paths in 2-edge-coloured graphs and hypergraphs. Electron. J. Combin., 30, 2023.