Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying spatial interdependence in panel data with large N and small T (2309.03740v1)

Published 7 Sep 2023 in econ.EM

Abstract: This paper develops a simple two-stage variational Bayesian algorithm to estimate panel spatial autoregressive models, where N, the number of cross-sectional units, is much larger than T, the number of time periods without restricting the spatial effects using a predetermined weighting matrix. We use Dirichlet-Laplace priors for variable selection and parameter shrinkage. Without imposing any a priori structures on the spatial linkages between variables, we let the data speak for themselves. Extensive Monte Carlo studies show that our method is super-fast and our estimated spatial weights matrices strongly resemble the true spatial weights matrices. As an illustration, we investigate the spatial interdependence of European Union regional gross value added growth rates. In addition to a clear pattern of predominant country clusters, we have uncovered a number of important between-country spatial linkages which are yet to be documented in the literature. This new procedure for estimating spatial effects is of particular relevance for researchers and policy makers alike.

Citations (2)

Summary

We haven't generated a summary for this paper yet.