Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short-Term Load Forecasting Using A Particle-Swarm Optimized Multi-Head Attention-Augmented CNN-LSTM Network (2309.03694v2)

Published 7 Sep 2023 in cs.LG, cs.NE, cs.SY, and eess.SY

Abstract: Short-term load forecasting is of paramount importance in the efficient operation and planning of power systems, given its inherent non-linear and dynamic nature. Recent strides in deep learning have shown promise in addressing this challenge. However, these methods often grapple with hyperparameter sensitivity, opaqueness in interpretability, and high computational overhead for real-time deployment. In this paper, I propose a novel solution that surmounts these obstacles. Our approach harnesses the power of the Particle-Swarm Optimization algorithm to autonomously explore and optimize hyperparameters, a Multi-Head Attention mechanism to discern the salient features crucial for accurate forecasting, and a streamlined framework for computational efficiency. Our method undergoes rigorous evaluation using a genuine electricity demand dataset. The results underscore its superiority in terms of accuracy, robustness, and computational efficiency. Notably, our Mean Absolute Percentage Error of 1.9376 marks a significant advancement over existing state-of-the-art approaches, heralding a new era in short-term load forecasting.

Summary

We haven't generated a summary for this paper yet.