Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NeuroCodeBench: a plain C neural network benchmark for software verification (2309.03617v1)

Published 7 Sep 2023 in cs.SE, cs.AI, and cs.CR

Abstract: Safety-critical systems with neural network components require strong guarantees. While existing neural network verification techniques have shown great progress towards this goal, they cannot prove the absence of software faults in the network implementation. This paper presents NeuroCodeBench - a verification benchmark for neural network code written in plain C. It contains 32 neural networks with 607 safety properties divided into 6 categories: maths library, activation functions, error-correcting networks, transfer function approximation, probability density estimation and reinforcement learning. Our preliminary evaluation shows that state-of-the-art software verifiers struggle to provide correct verdicts, due to their incomplete support of the standard C mathematical library and the complexity of larger neural networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.