Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subdivision schemes based on weighted local polynomial regression. A new technique for the convergence analysis (2309.03500v1)

Published 7 Sep 2023 in math.NA and cs.NA

Abstract: The generation of curves and surfaces from given data is a well-known problem in Computer-Aided Design that can be approached using subdivision schemes. They are powerful tools that allow obtaining new data from the initial one by means of simple calculations. However, in some applications, the collected data are given with noise and most of schemes are not adequate to process them. In this paper, we present some new families of binary univariate linear subdivision schemes using weighted local polynomial regression. We study their properties, such as convergence, monotonicity, polynomial reproduction and approximation and denoising capabilities. For the convergence study, we develop some new theoretical results. Finally, some examples are presented to confirm the proven properties.

Citations (1)

Summary

We haven't generated a summary for this paper yet.