Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast FixMatch: Faster Semi-Supervised Learning with Curriculum Batch Size (2309.03469v1)

Published 7 Sep 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Advances in Semi-Supervised Learning (SSL) have almost entirely closed the gap between SSL and Supervised Learning at a fraction of the number of labels. However, recent performance improvements have often come \textit{at the cost of significantly increased training computation}. To address this, we propose Curriculum Batch Size (CBS), \textit{an unlabeled batch size curriculum which exploits the natural training dynamics of deep neural networks.} A small unlabeled batch size is used in the beginning of training and is gradually increased to the end of training. A fixed curriculum is used regardless of dataset, model or number of epochs, and reduced training computations is demonstrated on all settings. We apply CBS, strong labeled augmentation, Curriculum Pseudo Labeling (CPL) \citep{FlexMatch} to FixMatch \citep{FixMatch} and term the new SSL algorithm Fast FixMatch. We perform an ablation study to show that strong labeled augmentation and/or CPL do not significantly reduce training computations, but, in synergy with CBS, they achieve optimal performance. Fast FixMatch also achieves substantially higher data utilization compared to previous state-of-the-art. Fast FixMatch achieves between $2.1\times$ - $3.4\times$ reduced training computations on CIFAR-10 with all but 40, 250 and 4000 labels removed, compared to vanilla FixMatch, while attaining the same cited state-of-the-art error rate \citep{FixMatch}. Similar results are achieved for CIFAR-100, SVHN and STL-10. Finally, Fast MixMatch achieves between $2.6\times$ - $3.3\times$ reduced training computations in federated SSL tasks and online/streaming learning SSL tasks, which further demonstrate the generializbility of Fast MixMatch to different scenarios and tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. John Chen (19 papers)
  2. Chen Dun (16 papers)
  3. Anastasios Kyrillidis (96 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.