Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equidistribution of the zeros of higher order derivatives in polynomial dynamics (2309.03296v1)

Published 6 Sep 2023 in math.DS and math.CV

Abstract: For every $m\in\mathbb{N}$, we establish the convergence of the averaged distributions of the zeros of the $m$-th order derivatives $(fn){(m)}$ of the iterated polynomials $fn$ of a polynomial $f\in\mathbb{C}[z]$ of degree $>1$ towards the harmonic measure of the filled-in Julia set of $f$ with pole at $\infty$ as $n\to+\infty$, when $f$ has no exceptional points in $\mathbb{C}$. This complements our former study on the zeros of $(fn){(m)}-a$ for any value $a\in\mathbb{C}\setminus{0}$. The key in the proof is an approximation of the higher order derivatives of a solution of the Schr\"oder or Abel functional equations for a meromorphic function on $\mathbb{C}$ with a locally uniform non-trivial error estimate.

Summary

We haven't generated a summary for this paper yet.