Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite dimensional approximation to fractional stochastic integro-differential equations with non-instantaneous impulses (2309.03102v1)

Published 10 Aug 2023 in math.NA and cs.NA

Abstract: This manuscript proposes a class of fractional stochastic integro-differential equation (FSIDE) with non-instantaneous impulses in an arbitrary separable Hilbert space. We use a projection scheme of increasing sequence of finite dimensional subspaces and projection operators to define approximations. In order to demonstrate the existence and convergence of an approximate solution, we utilize stochastic analysis theory, fractional calculus, theory of fractional cosine family of linear operators and fixed point approach. Furthermore, we examine the convergence of Faedo-Galerkin(F-G) approximate solution to the mild solution of our given problem. Finally, a concrete example involving partial differential equation is provided to validate the main abstract results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.