Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prompt-based Ingredient-Oriented All-in-One Image Restoration (2309.03063v2)

Published 6 Sep 2023 in cs.CV

Abstract: Image restoration aims to recover the high-quality images from their degraded observations. Since most existing methods have been dedicated into single degradation removal, they may not yield optimal results on other types of degradations, which do not satisfy the applications in real world scenarios. In this paper, we propose a novel data ingredient-oriented approach that leverages prompt-based learning to enable a single model to efficiently tackle multiple image degradation tasks. Specifically, we utilize a encoder to capture features and introduce prompts with degradation-specific information to guide the decoder in adaptively recovering images affected by various degradations. In order to model the local invariant properties and non-local information for high-quality image restoration, we combined CNNs operations and Transformers. Simultaneously, we made several key designs in the Transformer blocks (multi-head rearranged attention with prompts and simple-gate feed-forward network) to reduce computational requirements and selectively determines what information should be persevered to facilitate efficient recovery of potentially sharp images. Furthermore, we incorporate a feature fusion mechanism further explores the multi-scale information to improve the aggregated features. The resulting tightly interlinked hierarchy architecture, named as CAPTNet, extensive experiments demonstrate that our method performs competitively to the state-of-the-art.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convolutional blind denoising of real photographs,” 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  2. W. Lee, S. Son, and K. M. Lee, “Ap-bsn: Self-supervised denoising for real-world images via asymmetric pd and blind-spot network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  3. Z. Zhang, Y. Jiang, W. Shao, X. Wang, P. Luo, K. Lin, and J. Gu, “Real-time controllable denoising for image and video,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 14 028–14 038.
  4. L. Kong, J. Dong, J. Ge, M. Li, and J. Pan, “Efficient frequency domain-based transformers for high-quality image deblurring,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5886–5895.
  5. J. Pan, B. Xu, H. Bai, J. Tang, and M.-H. Yang, “Cascaded deep video deblurring using temporal sharpness prior and non-local spatial-temporal similarity,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  6. J. Pan, B. Xu, J. Dong, J. Ge, and J. Tang, “Deep discriminative spatial and temporal network for efficient video deblurring,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 191–22 200.
  7. J. Xiao, X. Fu, A. Liu, F. Wu, and Z.-J. Zha, “Image de-raining transformer,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–18, 2022.
  8. X. Chen, H. Li, M. Li, and J. Pan, “Learning a sparse transformer network for effective image deraining,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5896–5905.
  9. D. Yang, X. He, and R. Zhang, “Alternating attention transformer for single image deraining,” Digital Signal Processing, p. 104144, 2023.
  10. B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “Aod-net: All-in-one dehazing network,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 4770–4778.
  11. X. Qin, Z. Wang, Y. Bai, X. Xie, and H. Jia, “Ffa-net: Feature fusion attention network for single image dehazing,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 908–11 915.
  12. Y. Song, Y. Zhou, H. Qian, and X. Du, “Rethinking performance gains in image dehazing networks,” arXiv preprint arXiv:2209.11448, 2022.
  13. Y. Zheng, J. Zhan, S. He, J. Dong, and Y. Du, “Curricular contrastive regularization for physics-aware single image dehazing,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  14. H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao, “Pre-trained image processing transformer,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12 294–12 305, 2020.
  15. R. Li, R. T. Tan, and L.-F. Cheong, “All in one bad weather removal using architectural search,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 3175–3185.
  16. J. M. J. Valanarasu, R. Yasarla, and V. M. Patel, “Transweather: Transformer-based restoration of images degraded by adverse weather conditions,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2353–2363.
  17. L. Liu, L. Xie, X. Zhang, S. Yuan, X. Chen, W. Zhou, H. Li, and Q. Tian, “Tape: Task-agnostic prior embedding for image restoration,” in European Conference on Computer Vision.   Springer, 2022, pp. 447–464.
  18. B. Li, X. Liu, P. Hu, Z. Wu, J. Lv, and X. Peng, “All-in-one image restoration for unknown corruption,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 452–17 462.
  19. J. Zhang, J. Huang, M. Yao, Z. Yang, H. Yu, M. Zhou, and F. Zhao, “Ingredient-oriented multi-degradation learning for image restoration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5825–5835.
  20. L. Chen, X. Chu, X. Zhang, and J. Sun, “Simple baselines for image restoration,” arXiv preprint arXiv:2204.04676, 2022.
  21. S. Nah, T. H. Kim, and K. M. Lee, “Deep multi-scale convolutional neural network for dynamic scene deblurring,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 257–265, 2016.
  22. W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan, “Deep joint rain detection and removal from a single image,” CVPR, 2017.
  23. D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2.   IEEE, 2001, pp. 416–423.
  24. B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang, “Benchmarking single-image dehazing and beyond,” IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 492–505, 2018.
  25. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D Nonlinear Phenomena, 1992.
  26. C. Z. Song and D. Mumford, “Prior learning and gibbs reaction-diffusion,” TPAMI, vol. 19, no. 11, pp. 1236–1250, 1997.
  27. S. Roth and M. J. Black, “Fields of experts: A framework for learning image priors,” in CVPR, 2005.
  28. W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization,” TIP, vol. 20, no. 7, pp. 1838–1857, 2011.
  29. K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” TPAMI, 2011.
  30. K. Purohit, M. Suin, A. Rajagopalan, and V. N. Boddeti, “Spatially-adaptive image restoration using distortion-guided networks,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2309–2319.
  31. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, “Learning enriched features for fast image restoration and enhancement,” TPAMI, 2022.
  32. ——, “Multi-stage progressive image restoration,” in CVPR, 2021.
  33. C. Mou, Q. Wang, and J. Zhang, “Deep generalized unfolding networks for image restoration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 399–17 410.
  34. J. Pan, D. Sun, J. Zhang, J. Tang, J. Yang, Y.-W. Tai, and M.-H. Yang, “Dual convolutional neural networks for low-level vision,” International Journal of Computer Vision, vol. 130, no. 6, pp. 1440–1458, 2022.
  35. H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao, “Pre-trained image processing transformer,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 12 299–12 310.
  36. X. Li, X. Jin, J. Lin, S. Liu, Y. Wu, T. Yu, W. Zhou, and Z. Chen, “Learning disentangled feature representation for hybrid-distorted image restoration,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16.   Springer, 2020, pp. 313–329.
  37. J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “Swinir: Image restoration using swin transformer,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 1833–1844.
  38. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang, “Restormer: Efficient transformer for high-resolution image restoration,” in CVPR, 2022.
  39. Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li, “Uformer: A general u-shaped transformer for image restoration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 17 683–17 693.
  40. L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and consequences,” Minds and Machines, vol. 30, pp. 681–694, 2020.
  41. M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim, “Visual prompt tuning,” in European Conference on Computer Vision.   Springer, 2022, pp. 709–727.
  42. X. Nie, B. Ni, J. Chang, G. Meng, C. Huo, Z. Zhang, S. Xiang, Q. Tian, and C. Pan, “Pro-tuning: Unified prompt tuning for vision tasks,” arXiv preprint arXiv:2207.14381, 2022.
  43. H. Wang, J. Chang, X. Luo, J. Sun, Z. Lin, and Q. Tian, “Lion: Implicit vision prompt tuning,” arXiv preprint arXiv:2303.09992, 2023.
  44. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  45. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” ICLR, 2021.
  46. X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley, “Removing rain from single images via a deep detail network,” in CVPR, 2017.
  47. Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown, “Rain streak removal using layer priors,” in CVPR, 2016.
  48. H. Zhang, V. A. Sindagi, and V. M. Patel, “Image de-raining using a conditional generative adversarial network,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, pp. 3943–3956, 2017.
  49. H. Zhang and V. M. Patel, “Density-aware single image de-raining using a multi-stream dense network,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 695–704, 2018.
  50. Z. Shen, W. Wang, X. Lu, J. Shen, H. Ling, T. Xu, and L. Shao, “Human-aware motion deblurring,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5571–5580, 2019.
  51. K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang, “Waterloo exploration database: New challenges for image quality assessment models,” IEEE Transactions on Image Processing, vol. 26, no. 2, pp. 1004–1016, 2016.
  52. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Computer Science, 2014.
  53. I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” 2016.
  54. X. Chu, L. Chen, C. Chen, and X. Lu, “Improving image restoration by revisiting global information aggregation,” in ECCV, 2021.
  55. L. Chen, X. Lu, J. Zhang, X. Chu, and C. Chen, “Hinet: Half instance normalization network for image restoration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2021, pp. 182–192.
  56. Q. Fan, D. Chen, L. Yuan, G. Hua, N. Yu, and B. Chen, “A general decoupled learning framework for parameterized image operators,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 1, pp. 33–47, 2019.
  57. K. Jiang, Z. Wang, P. Yi, C. Chen, B. Huang, Y. Luo, J. Ma, and J. Jiang, “Multi-scale progressive fusion network for single image deraining,” CVPR, 2020.
  58. K. Purohit, M. Suin, A. N. Rajagopalan, and V. N. Boddeti, “Spatially-adaptive image restoration using distortion-guided networks,” CoRR, vol. abs/2108.08617, 2021.
  59. S. J. Cho, S. W. Ji, J. P. Hong, S. W. Jung, and S. J. Ko, “Rethinking coarse-to-fine approach in single image deblurring,” in ICCV, 2021.
  60. J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from transformed self-exemplars,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 5197–5206.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hu Gao (15 papers)
  2. Depeng Dang (16 papers)
Citations (4)