Generalized Cesàro-like operator from a class of analytic function spaces to analytic Besov spaces (2309.02717v1)
Abstract: Let $\mu$ be a finite positive Borel measure on $[0,1)$ and $f(z)=\sum_{n=0}{\infty}a_{n}z{n} \in H(\mathbb{D})$. For $0<\alpha<\infty$, the generalized Ces`aro-like operator $\mathcal{C}{\mu,\alpha}$ is defined by $$ \mathcal {C}{\mu,\alpha}(f)(z)=\sum\infty_{n=0}\left(\mu_n\sumn_{k=0}\frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!}a_k\right)zn, \ z\in \mathbb{D}, $$ where, for $n\geq 0$, $\mu_n$ denotes the $n$-th moment of the measure $\mu$, that is, $\mu_n=\int_{0}{1} t{n}d\mu(t)$. For $s>1$, let $X$ be a Banach subspace of $ H(\mathbb{D})$ with $\Lambda{s}_{\frac{1}{s}}\subset X\subset\mathcal {B}$. In this paper, for $1\leq p <\infty$, we characterize the measure $\mu$ for which $\mathcal{C}{\mu,\alpha}$ is bounded(or compact) from $X$ into analytic Besov space $B{p}$.