Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Episodic Logit-Q Dynamics for Efficient Learning in Stochastic Teams (2309.02675v2)

Published 6 Sep 2023 in cs.GT

Abstract: We present new learning dynamics combining (independent) log-linear learning and value iteration for stochastic games within the auxiliary stage game framework. The dynamics presented provably attain the efficient equilibrium (also known as optimal equilibrium) in identical-interest stochastic games, beyond the recent concentration of progress on provable convergence to some (possibly inefficient) equilibrium. The dynamics are also independent in the sense that agents take actions consistent with their local viewpoint to a reasonable extent rather than seeking equilibrium. These aspects can be of practical interest in the control applications of intelligent and autonomous systems. The key challenges are the convergence to an inefficient equilibrium and the non-stationarity of the environment from a single agent's viewpoint due to the adaptation of others. The log-linear update plays an important role in addressing the former. We address the latter through the play-in-episodes scheme in which the agents update their Q-function estimates only at the end of the episodes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Onur Unlu (3 papers)
  2. Muhammed O. Sayin (27 papers)

Summary

We haven't generated a summary for this paper yet.