Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A family of integrable maps associated with the Volterra lattice (2309.02336v3)

Published 5 Sep 2023 in nlin.SI, math-ph, and math.MP

Abstract: Recently Gubbiotti, Joshi, Tran and Viallet classified birational maps in four dimensions admitting two invariants (first integrals) with a particular degree structure, by considering recurrences of fourth order with a certain symmetry. The last three of the maps so obtained were shown to be Liouville integrable, in the sense of admitting a non-degenerate Poisson bracket with two first integrals in involution. Here we show how the first of these three Liouville integrable maps corresponds to genus 2 solutions of the infinite Volterra lattice, being the $g=2$ case of a family of maps associated with the Stieltjes continued fraction expansion of a certain function on a hyperelliptic curve of genus $g\geqslant 1$. The continued fraction method provides explicit Hankel determinant formulae for tau functions of the solutions, together with an algebro-geometric description via a Lax representation for each member of the family, associating it with an algebraic completely integrable system. In particular, in the elliptic case ($g=1$), as a byproduct we obtain Hankel determinant expressions for the solutions of the Somos-5 recurrence, but different to those previously derived by Chang, Hu and Xin. By applying contraction to the Stieltjes fraction, we recover integrable maps associated with Jacobi continued fractions on hyperelliptic curves, that one of us considered previously, as well as the Miura-type transformation between the Volterra and Toda lattices.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com