Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond the classical type I error: Bayesian metrics for Bayesian designs using informative priors (2309.02141v1)

Published 5 Sep 2023 in stat.ME

Abstract: There is growing interest in Bayesian clinical trial designs with informative prior distributions, e.g. for extrapolation of adult data to pediatrics, or use of external controls. While the classical type I error is commonly used to evaluate such designs, it cannot be strictly controlled and it is acknowledged that other metrics may be more appropriate. We focus on two common situations - borrowing control data or information on the treatment contrast - and discuss several fully probabilistic metrics to evaluate the risk of false positive conclusions. Each metric requires specification of a design prior, which can differ from the analysis prior and permits understanding of the behaviour of a Bayesian design under scenarios where the analysis prior differs from the true data generation process. The metrics include the average type I error and the pre-posterior probability of a false positive result. We show that, when borrowing control data, the average type I error is asymptotically (in certain cases strictly) controlled when the analysis and design prior coincide. We illustrate use of these Bayesian metrics with real applications, and discuss how they could facilitate discussions between sponsors, regulators and other stakeholders about the appropriateness of Bayesian borrowing designs for pivotal studies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.