Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhance Multi-domain Sentiment Analysis of Review Texts through Prompting Strategies (2309.02045v2)

Published 5 Sep 2023 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs have made significant strides in both scientific research and practical applications. Existing studies have demonstrated the state-of-the-art (SOTA) performance of LLMs in various natural language processing tasks. However, the question of how to further enhance LLMs' performance in specific task using prompting strategies remains a pivotal concern. This paper explores the enhancement of LLMs' performance in sentiment analysis through the application of prompting strategies. We formulate the process of prompting for sentiment analysis tasks and introduce two novel strategies tailored for sentiment analysis: RolePlaying (RP) prompting and Chain-of-thought (CoT) prompting. Specifically, we also propose the RP-CoT prompting strategy which is a combination of RP prompting and CoT prompting. We conduct comparative experiments on three distinct domain datasets to evaluate the effectiveness of the proposed sentiment analysis strategies. The results demonstrate that the adoption of the proposed prompting strategies leads to a increasing enhancement in sentiment analysis accuracy. Further, the CoT prompting strategy exhibits a notable impact on implicit sentiment analysis, with the RP-CoT prompting strategy delivering the most superior performance among all strategies.

Citations (4)

Summary

We haven't generated a summary for this paper yet.