Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The $\ell$-intersection Pairs of Constacyclic and Conjucyclic Codes (2309.01985v1)

Published 5 Sep 2023 in cs.IT, math.IT, and math.RA

Abstract: A pair of linear codes whose intersection is of dimension $\ell$, where $\ell$ is a non-negetive integer, is called an $\ell$-intersection pair of codes. This paper focuses on studying $\ell$-intersection pairs of $\lambda_i$-constacyclic, $i=1,2,$ and conjucyclic codes. We first characterize an $\ell$-intersection pair of $\lambda_i$-constacyclic codes. A formula for $\ell$ has been established in terms of the degrees of the generator polynomials of $\lambda_i$-constacyclic codes. This allows obtaining a condition for $\ell$-linear complementary pairs (LPC) of constacyclic codes. Later, we introduce and characterize the $\ell$-intersection pair of conjucyclic codes over $\mathbb{F}{q2}$. The first observation in the process is that there are no non-trivial linear conjucyclic codes over finite fields. So focus on the characterization of additive conjucyclic (ACC) codes. We show that the largest $\mathbb{F}_q$-subcode of an ACC code over $\mathbb{F}{q2}$ is cyclic and obtain its generating polynomial. This enables us to find the size of an ACC code. Furthermore, we discuss the trace code of an ACC code and show that it is cyclic. Finally, we determine $\ell$-intersection pairs of trace codes of ACC codes over $\mathbb{F}_4$.

Summary

We haven't generated a summary for this paper yet.