Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Understanding of Deepfake Videos in the Wild (2309.01919v2)

Published 5 Sep 2023 in cs.CY

Abstract: Deepfakes have become a growing concern in recent years, prompting researchers to develop benchmark datasets and detection algorithms to tackle the issue. However, existing datasets suffer from significant drawbacks that hamper their effectiveness. Notably, these datasets fail to encompass the latest deepfake videos produced by state-of-the-art methods that are being shared across various platforms. This limitation impedes the ability to keep pace with the rapid evolution of generative AI techniques employed in real-world deepfake production. Our contributions in this IRB-approved study are to bridge this knowledge gap from current real-world deepfakes by providing in-depth analysis. We first present the largest and most diverse and recent deepfake dataset (RWDF-23) collected from the wild to date, consisting of 2,000 deepfake videos collected from 4 platforms targeting 4 different languages span created from 21 countries: Reddit, YouTube, TikTok, and Bilibili. By expanding the dataset's scope beyond the previous research, we capture a broader range of real-world deepfake content, reflecting the ever-evolving landscape of online platforms. Also, we conduct a comprehensive analysis encompassing various aspects of deepfakes, including creators, manipulation strategies, purposes, and real-world content production methods. This allows us to gain valuable insights into the nuances and characteristics of deepfakes in different contexts. Lastly, in addition to the video content, we also collect viewer comments and interactions, enabling us to explore the engagements of internet users with deepfake content. By considering this rich contextual information, we aim to provide a holistic understanding of the {evolving} deepfake phenomenon and its impact on online platforms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Beomsang Cho (1 paper)
  2. Binh M. Le (10 papers)
  3. Jiwon Kim (50 papers)
  4. Simon Woo (6 papers)
  5. Shahroz Tariq (20 papers)
  6. Alsharif Abuadbba (48 papers)
  7. Kristen Moore (36 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.