Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable Time Step Method of DAHLQUIST, LINIGER and NEVANLINNA (DLN) for a Corrected Smagorinsky Model (2309.01867v1)

Published 5 Sep 2023 in math.NA and cs.NA

Abstract: Turbulent flows strain resources, both memory and CPU speed. The DLN method has greater accuracy and allows larger time steps, requiring less memory and fewer FLOPS. The DLN method can also be implemented adaptively. The classical Smagorinsky model, as an effective way to approximate a (resolved) mean velocity, has recently been corrected to represent a flow of energy from unresolved fluctuations to the (resolved) mean velocity. In this paper, we apply a family of second-order, G-stable time-stepping methods proposed by Dahlquist, Liniger, and Nevanlinna (the DLN method) to one corrected Smagorinsky model and provide the detailed numerical analysis of the stability and consistency. We prove that the numerical solutions under any arbitrary time step sequences are unconditionally stable in the long term and converge at second order. We also provide error estimate under certain time step condition. Numerical tests are given to confirm the rate of convergence and also to show that the adaptive DLN algorithm helps to control numerical dissipation so that backscatter is visible.

Citations (4)

Summary

We haven't generated a summary for this paper yet.