Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning (2309.01730v2)

Published 4 Sep 2023 in cs.NI and cs.LG

Abstract: Open Radio Access Network systems, with their virtualized base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability. Optimizing the allocation of resources in a vBS is challenging since it requires knowledge of the environment, (i.e., "external'' information), such as traffic demands and channel quality, which is difficult to acquire precisely over short intervals of a few seconds. To tackle this problem, we propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments; for instance, non-stationary or adversarial traffic demands. We also develop a meta-learning scheme, which leverages the power of other algorithmic approaches, tailored for more "easy'' environments, and dynamically chooses the best performing one, thus enhancing the overall system's versatility and effectiveness. We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments. The performance of the algorithms is evaluated with real-world data and various trace-driven evaluations, indicating savings of up to 64.5% in the power consumption of a vBS compared with state-of-the-art benchmarks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com