Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the anisotropies of the cosmological gravitational-wave background from pulsar timing array observations (2309.01643v2)

Published 4 Sep 2023 in astro-ph.CO and hep-ph

Abstract: Significant evidence for a stochastic gravitational-wave background has recently been reported by several Pulsar Timing Array observations. These studies have shown that, in addition to astrophysical explanations based on supermassive black hole binaries (SMBHBs), cosmological origins are considered equally important sources for these signals. To further explore these cosmological sources, in this study, we discuss the anisotropies in the cosmological gravitational wave background (CGWB) in a model-independent way. Taking the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 15-year dataset as a benchmark, we estimate the angular power spectra of the CGWB and their cross-correlations with cosmic microwave background (CMB) fluctuations and weak gravitational lensing. We find that the NANOGrav 15-year data implies suppressed Sachs-Wolf (SW) effects in the CGBW spectrum, leading to a marginally negative cross-correlation with the CMB at large scales. This procedure is applicable to signals introduced by different early universe processes and is potentially useful for identifying unique features about anisotropies of CGWB from future space-based interferometers and astrometric measurements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. J. D. Romano and N. J. Cornish, Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
  2. N. Christensen, Rept. Prog. Phys. 82, 016903 (2019), arXiv:1811.08797 [gr-qc] .
  3. P. Auclair et al. (LISA Cosmology Working Group), Living Rev. Rel. 26, 5 (2023), arXiv:2204.05434 [astro-ph.CO] .
  4. T. Vachaspati and A. Vilenkin, Phys. Rev. D 31, 3052 (1985).
  5. C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
  6. N. Aggarwal et al., Living Rev. Rel. 24, 4 (2021), arXiv:2011.12414 [gr-qc] .
  7. A. J. Farmer and E. S. Phinney, Mon. Not. Roy. Astron. Soc. 346, 1197 (2003), arXiv:astro-ph/0304393 .
  8. T. Regimbau, Res. Astron. Astrophys. 11, 369 (2011), arXiv:1101.2762 [astro-ph.CO] .
  9. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023a), arXiv:2306.16213 [astro-ph.HE] .
  10. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L9 (2023b), arXiv:2306.16217 [astro-ph.HE] .
  11. H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
  12. J. Antoniadis et al. (EPTA),   (2023a), 10.1051/0004-6361/202346841, arXiv:2306.16224 [astro-ph.HE] .
  13. J. Antoniadis et al. (EPTA),   (2023b), arXiv:2306.16225 [astro-ph.HE] .
  14. J. Antoniadis et al. (EPTA),   (2023c), arXiv:2306.16214 [astro-ph.HE] .
  15. D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023a), arXiv:2306.16215 [astro-ph.HE] .
  16. D. J. Reardon et al., Astrophys. J. Lett. 951, L7 (2023b), arXiv:2306.16229 [astro-ph.HE] .
  17. A. Zic et al.,   (2023), arXiv:2306.16230 [astro-ph.HE] .
  18. A. Afzal et al. (NANOGrav), Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
  19. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 952, L37 (2023c), arXiv:2306.16220 [astro-ph.HE] .
  20. J. Antoniadis et al. (EPTA),   (2023d), arXiv:2306.16227 [astro-ph.CO] .
  21. P. Amaro-Seoane et al. (LISA),   (2017), arXiv:1702.00786 [astro-ph.IM] .
  22. K. G. Arun et al. (LISA), Living Rev. Rel. 25, 4 (2022), arXiv:2205.01597 [gr-qc] .
  23. W.-R. Hu and Y.-L. Wu, Natl. Sci. Rev. 4, 685 (2017).
  24. J. Luo et al. (TianQin), Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
  25. V. Corbin and N. J. Cornish, Class. Quant. Grav. 23, 2435 (2006), arXiv:gr-qc/0512039 .
  26. S. Kawamura et al., Class. Quant. Grav. 23, S125 (2006).
  27. M. Maggiore et al., JCAP 03, 050 (2020), arXiv:1912.02622 [astro-ph.CO] .
  28. D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
  29. V. Alba and J. Maldacena, JHEP 03, 115 (2016), arXiv:1512.01531 [hep-th] .
  30. C. R. Contaldi, Phys. Lett. B 771, 9 (2017), arXiv:1609.08168 [astro-ph.CO] .
  31. G. Sato-Polito and M. Kamionkowski,   (2023), arXiv:2305.05690 [astro-ph.CO] .
  32. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  33. R. A. Isaacson, Phys. Rev. 166, 1263 (1968a).
  34. R. A. Isaacson, Phys. Rev. 166, 1272 (1968b).
  35. U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437 (1996), arXiv:astro-ph/9603033 .
  36. S. Dodelson, Modern Cosmology (Academic Press, Amsterdam, 2003).
  37. R. Ding and C. Tian,  in preparation .
  38. J. Lesgourgues,   (2011), arXiv:1104.2932 [astro-ph.IM] .
  39. M. Braglia and S. Kuroyanagi, Phys. Rev. D 104, 123547 (2021), arXiv:2106.03786 [astro-ph.CO] .
  40. A. Lewis and A. Challinor, Phys. Rept. 429, 1 (2006), arXiv:astro-ph/0601594 .
  41. G. Agazie et al. (NANOGrav),   (2023d), arXiv:2306.16221 [astro-ph.HE] .
  42. S. A. Klioner, Class. Quant. Grav. 35, 045005 (2018), arXiv:1710.11474 [astro-ph.HE] .
  43. T. Prusti et al. (Gaia), Astron. Astrophys. 595, A1 (2016), arXiv:1609.04153 [astro-ph.IM] .
  44. A. Bodas and R. Sundrum, JHEP 06, 029 (2023), arXiv:2211.09301 [hep-ph] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com