Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter identifiability and model selection for partial differential equation models of cell invasion (2309.01476v2)

Published 4 Sep 2023 in q-bio.QM and q-bio.CB

Abstract: When employing mechanistic models to study biological phenomena, practical parameter identifiability is important for making accurate predictions across wide range of unseen scenarios, as well as for understanding the underlying mechanisms. In this work we use a profile likelihood approach to investigate parameter identifiability for four extensions of the Fisher--KPP model, given experimental data from a cell invasion assay. We show that more complicated models tend to be less identifiable, with parameter estimates being more sensitive to subtle differences in experimental procedures, and that they require more data to be practically identifiable. As a result, we suggest that parameter identifiability should be considered alongside goodness-of-fit and model complexity as criteria for model selection.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Ken Aho, DeWayne Derryberry and Teri Peterson “Model selection for ecologists: the worldviews of AIC and BIC” In Ecology 95.3 Wiley, 2014, pp. 631–636 JSTOR: 43495189
  2. Uri M. Ascher, Steven J. Ruuth and Brian T.R. Wetton “Implicit-explicit methods for time-dependent partial differential equations” In SIAM Journal on Numerical Analysis 32 Society for Industrial and Applied Mathematics, 1995, pp. 797–823 DOI: 10.1137/0732037
  3. “Model selection and mixed-effects modeling of HIV infection dynamics” In Bulletin of Mathematical Biology 68.8, 2006, pp. 2005–2025 DOI: 10.1007/s11538-006-9084-x
  4. Alexander P. Browning and Matthew J. Simpson “Geometric analysis enables biological insight from complex non-identifiable models using simple surrogates” In PLOS Computational Biology 19.1 Public Library of Science, 2023, pp. e1010844 DOI: 10.1371/journal.pcbi.1010844
  5. “Structural identifiability analysis of linear reaction-advection-diffusion processes in mathematical biology” arXiv, 2023 DOI: 10.48550/arXiv.2309.15326
  6. Kenneth P. Burnham and David R. Anderson “Multimodel inference: understanding AIC and BIC in model selection” In Sociological Methods & Research 33.2 SAGE Publications Inc, 2004, pp. 261–304 DOI: 10.1177/0049124104268644
  7. Oana-Teodora Chis, Julio R. Banga and Eva Balsa-Canto “Structural identifiability of systems biology models: a critical comparison of methods” In PLOS ONE 6.11 Public Library of Science, 2011, pp. e27755 DOI: 10.1371/journal.pone.0027755
  8. “Quantifying Tissue Growth, Shape and Collision via Continuum Models and Bayesian Inference” In Journal of The Royal Society Interface 20.204 Royal Society, 2023, pp. 20230184 DOI: 10.1098/rsif.2023.0184
  9. Ronald A. Fisher “The wave of advance of advantageous genes” In Annals of Eugenics 7.4, 1937, pp. 355–369 DOI: 10.1111/j.1469-1809.1937.tb02153.x
  10. “A current perspective on wound healing and tumour-induced angiogenesis” In Bulletin of Mathematical Biology 82.2, 2020, pp. 23 DOI: 10.1007/s11538-020-00696-0
  11. Philip Gerlee “The model muddle: in search of tumor growth laws” In Cancer Research 73.8, 2013, pp. 2407–2411 DOI: 10.1158/0008-5472.CAN-12-4355
  12. “Robust simulation design for generalized linear models in conditions of heteroscedasticity or correlation” In 2022 Winter Simulation Conference (WSC), 2022, pp. 37–48 DOI: 10.1109/WSC57314.2022.10015326
  13. Abderrahmane Habbal, Hélène Barelli and Grégoire Malandain “Assessing the ability of the 2D Fisher–KPP equation to model cell-sheet wound closure” In Mathematical Biosciences 252, 2014, pp. 45–59 DOI: 10.1016/j.mbs.2014.03.009
  14. “Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation” In Proceedings of IEEE International Conference on Evolutionary Computation, 1996, pp. 312–317 DOI: 10.1109/ICEC.1996.542381
  15. Nikolaus Hansen “The CMA evolution strategy”, 2014 URL: https://cma-es.github.io/
  16. “Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice” In Bulletin of Mathematical Biology 77.5, 2015, pp. 846–856 DOI: 10.1007/s11538-015-0067-7
  17. “Reproducibility of scratch assays is affected by the initial degree of confluence: experiments, modelling and model selection” In Journal of Theoretical Biology 390, 2016, pp. 136–145 DOI: 10.1016/j.jtbi.2015.10.040
  18. “The role of initial geometry in experimental models of wound closing” In Chemical Engineering Science 179, 2018, pp. 221–226 DOI: 10.1016/j.ces.2018.01.004
  19. “Information Criteria and Statistical Modeling”, Springer Series in Statistics New York: Springer, 2008
  20. Julienne LaChance and Daniel J. Cohen “Practical fluorescence reconstruction microscopy for large samples and low-magnification imaging” In PLOS Computational Biology 16.12 Public Library of Science, 2020, pp. e1008443 DOI: 10.1371/journal.pcbi.1008443
  21. Philip K. Maini, Sean McElwain and David Leavesley “Travelling waves in a wound healing assay” In Applied Mathematics Letters 17.5, 2004, pp. 575–580 DOI: 10.1016/S0893-9659(04)90128-0
  22. “Hole-closing model reveals exponents for nonlinear degenerate diffusivity functions in cell biology” In Physica D: Nonlinear Phenomena 398, 2019, pp. 130–140 DOI: 10.1016/j.physd.2019.06.005
  23. Susan A. Murphy and Aad W. Van Der Vaart “On profile likelihood” In Journal of the American Statistical Association 95.450 Taylor & Francis, 2000, pp. 449–465 DOI: 10.1080/01621459.2000.10474219
  24. “Travelling wave behaviour for a Porous-Fisher equation” In European Journal of Applied Mathematics 9.3 Cambridge University Press, 1998, pp. 285–304 DOI: 10.1017/S0956792598003465
  25. Micha Peleg and Maria G. Corradini “Microbial growth curves: what the models tell us and what they cannot” In Critical Reviews in Food Science and Nutrition 51.10 Taylor & Francis, 2011, pp. 917–945 DOI: 10.1080/10408398.2011.570463
  26. “Comparison of approaches for parameter identifiability analysis of biological systems” In Bioinformatics 30.10, 2014, pp. 1440–1448 DOI: 10.1093/bioinformatics/btu006
  27. “Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability” In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371.1984 Royal Society, 2013, pp. 20110544 DOI: 10.1098/rsta.2011.0544
  28. “Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood” In Bioinformatics 25.15, 2009, pp. 1923–1929 DOI: 10.1093/bioinformatics/btp358
  29. “Gap geometry dictates epithelial closure efficiency” In Nature Communications 6.1 Nature Publishing Group, 2015, pp. 7683 DOI: 10.1038/ncomms8683
  30. Marissa Renardy, Denise Kirschner and Marisa Eisenberg “Structural identifiability analysis of age-structured PDE epidemic models” In Journal of Mathematical Biology 84.1, 2022, pp. 9 DOI: 10.1007/s00285-021-01711-1
  31. Francis J. Richards “A flexible growth function for empirical use” In Journal of Experimental Botany 10.2, 1959, pp. 290–301 DOI: 10.1093/jxb/10.2.290
  32. Steven J. Ruuth “Implicit-explicit methods for reaction-diffusion problems in pattern formation” In Journal of Mathematical Biology 34, 1995, pp. 148–176 DOI: 10.1007/BF00178771
  33. Bram G. Sengers, Colin P. Please and Richard O.C. Oreffo “Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration” In Journal of The Royal Society Interface 4.17 Royal Society, 2007, pp. 1107–1117 DOI: 10.1098/rsif.2007.0233
  34. Jonathan A. Sherratt, James D. Murray and Bryan C. Clarke “Models of epidermal wound healing” In Proceedings of the Royal Society of London. Series B: Biological Sciences 241.1300 Royal Society, 1990, pp. 29–36 DOI: 10.1098/rspb.1990.0061
  35. “The tumor invasion paradox in cancer stem cell-driven solid tumors” In Bulletin of Mathematical Biology 84.12, 2022, pp. 139 DOI: 10.1007/s11538-022-01086-4
  36. “Parameter identifiability and model selection for sigmoid population growth models” In Journal of theoretical biology 535, 2022, pp. 110998 DOI: 10.1016/j.jtbi.2021.110998
  37. “Practical parameter identifiability for spatio-temporal models of cell invasion” In Journal of The Royal Society Interface 17.164 Royal Society, 2020, pp. 20200055 DOI: 10.1098/rsif.2020.0055
  38. “Quantifying the roles of cell motility and cell proliferation in a circular barrier assay” In Journal of The Royal Society Interface 10.82, 2013, pp. 20130007 DOI: 10.1098/rsif.2013.0007
  39. Vladimir M. Tikhomirov “A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem” In Selected works of AN Kolmogorov Springer, 1991, pp. 242–270
  40. Katrina K. Treloar and Matthew J. Simpson “Sensitivity of edge detection methods for quantifying cell migration assays” In PLoS ONE 8.6, 2013, pp. e67389 DOI: 10.1371/journal.pone.0067389
  41. “Analysis of logistic growth models” In Mathematical Biosciences 179.1, 2002, pp. 21–55 DOI: 10.1016/S0025-5564(02)00096-2
  42. “Assessment of prediction uncertainty quantification methods in systems biology” In IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, pp. 1–12 DOI: 10.1109/TCBB.2022.3213914
  43. “Mathematical models for cell migration with real-time cell cycle dynamics” In Biophysical Journal 114.5 Elsevier, 2018, pp. 1241–1253 DOI: 10.1016/j.bpj.2017.12.041
  44. David J. Warne, Ruth E. Baker and Matthew J. Simpson “Using experimental data and information criteria to guide model selection for reaction–diffusion problems in mathematical biology” In Bulletin of Mathematical Biology 81.6, 2019, pp. 1760–1804 DOI: 10.1007/s11538-019-00589-x
  45. “Generalised likelihood profiles for models with intractable likelihoods” arXiv, 2023 DOI: 10.48550/arXiv.2305.10710
  46. “On structural and practical identifiability” In Current Opinion in Systems Biology 25, 2021, pp. 60–69 DOI: 10.1016/j.coisb.2021.03.005
  47. Thomas P. Witelski “Merging traveling waves for the Porous-Fisher’s equation” In Applied Mathematics Letters 8.4, 1995, pp. 57–62 DOI: 10.1016/0893-9659(95)00047-T
Citations (8)

Summary

We haven't generated a summary for this paper yet.