Parameter identifiability and model selection for partial differential equation models of cell invasion (2309.01476v2)
Abstract: When employing mechanistic models to study biological phenomena, practical parameter identifiability is important for making accurate predictions across wide range of unseen scenarios, as well as for understanding the underlying mechanisms. In this work we use a profile likelihood approach to investigate parameter identifiability for four extensions of the Fisher--KPP model, given experimental data from a cell invasion assay. We show that more complicated models tend to be less identifiable, with parameter estimates being more sensitive to subtle differences in experimental procedures, and that they require more data to be practically identifiable. As a result, we suggest that parameter identifiability should be considered alongside goodness-of-fit and model complexity as criteria for model selection.
- Ken Aho, DeWayne Derryberry and Teri Peterson “Model selection for ecologists: the worldviews of AIC and BIC” In Ecology 95.3 Wiley, 2014, pp. 631–636 JSTOR: 43495189
- Uri M. Ascher, Steven J. Ruuth and Brian T.R. Wetton “Implicit-explicit methods for time-dependent partial differential equations” In SIAM Journal on Numerical Analysis 32 Society for Industrial and Applied Mathematics, 1995, pp. 797–823 DOI: 10.1137/0732037
- “Model selection and mixed-effects modeling of HIV infection dynamics” In Bulletin of Mathematical Biology 68.8, 2006, pp. 2005–2025 DOI: 10.1007/s11538-006-9084-x
- Alexander P. Browning and Matthew J. Simpson “Geometric analysis enables biological insight from complex non-identifiable models using simple surrogates” In PLOS Computational Biology 19.1 Public Library of Science, 2023, pp. e1010844 DOI: 10.1371/journal.pcbi.1010844
- “Structural identifiability analysis of linear reaction-advection-diffusion processes in mathematical biology” arXiv, 2023 DOI: 10.48550/arXiv.2309.15326
- Kenneth P. Burnham and David R. Anderson “Multimodel inference: understanding AIC and BIC in model selection” In Sociological Methods & Research 33.2 SAGE Publications Inc, 2004, pp. 261–304 DOI: 10.1177/0049124104268644
- Oana-Teodora Chis, Julio R. Banga and Eva Balsa-Canto “Structural identifiability of systems biology models: a critical comparison of methods” In PLOS ONE 6.11 Public Library of Science, 2011, pp. e27755 DOI: 10.1371/journal.pone.0027755
- “Quantifying Tissue Growth, Shape and Collision via Continuum Models and Bayesian Inference” In Journal of The Royal Society Interface 20.204 Royal Society, 2023, pp. 20230184 DOI: 10.1098/rsif.2023.0184
- Ronald A. Fisher “The wave of advance of advantageous genes” In Annals of Eugenics 7.4, 1937, pp. 355–369 DOI: 10.1111/j.1469-1809.1937.tb02153.x
- “A current perspective on wound healing and tumour-induced angiogenesis” In Bulletin of Mathematical Biology 82.2, 2020, pp. 23 DOI: 10.1007/s11538-020-00696-0
- Philip Gerlee “The model muddle: in search of tumor growth laws” In Cancer Research 73.8, 2013, pp. 2407–2411 DOI: 10.1158/0008-5472.CAN-12-4355
- “Robust simulation design for generalized linear models in conditions of heteroscedasticity or correlation” In 2022 Winter Simulation Conference (WSC), 2022, pp. 37–48 DOI: 10.1109/WSC57314.2022.10015326
- Abderrahmane Habbal, Hélène Barelli and Grégoire Malandain “Assessing the ability of the 2D Fisher–KPP equation to model cell-sheet wound closure” In Mathematical Biosciences 252, 2014, pp. 45–59 DOI: 10.1016/j.mbs.2014.03.009
- “Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation” In Proceedings of IEEE International Conference on Evolutionary Computation, 1996, pp. 312–317 DOI: 10.1109/ICEC.1996.542381
- Nikolaus Hansen “The CMA evolution strategy”, 2014 URL: https://cma-es.github.io/
- “Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice” In Bulletin of Mathematical Biology 77.5, 2015, pp. 846–856 DOI: 10.1007/s11538-015-0067-7
- “Reproducibility of scratch assays is affected by the initial degree of confluence: experiments, modelling and model selection” In Journal of Theoretical Biology 390, 2016, pp. 136–145 DOI: 10.1016/j.jtbi.2015.10.040
- “The role of initial geometry in experimental models of wound closing” In Chemical Engineering Science 179, 2018, pp. 221–226 DOI: 10.1016/j.ces.2018.01.004
- “Information Criteria and Statistical Modeling”, Springer Series in Statistics New York: Springer, 2008
- Julienne LaChance and Daniel J. Cohen “Practical fluorescence reconstruction microscopy for large samples and low-magnification imaging” In PLOS Computational Biology 16.12 Public Library of Science, 2020, pp. e1008443 DOI: 10.1371/journal.pcbi.1008443
- Philip K. Maini, Sean McElwain and David Leavesley “Travelling waves in a wound healing assay” In Applied Mathematics Letters 17.5, 2004, pp. 575–580 DOI: 10.1016/S0893-9659(04)90128-0
- “Hole-closing model reveals exponents for nonlinear degenerate diffusivity functions in cell biology” In Physica D: Nonlinear Phenomena 398, 2019, pp. 130–140 DOI: 10.1016/j.physd.2019.06.005
- Susan A. Murphy and Aad W. Van Der Vaart “On profile likelihood” In Journal of the American Statistical Association 95.450 Taylor & Francis, 2000, pp. 449–465 DOI: 10.1080/01621459.2000.10474219
- “Travelling wave behaviour for a Porous-Fisher equation” In European Journal of Applied Mathematics 9.3 Cambridge University Press, 1998, pp. 285–304 DOI: 10.1017/S0956792598003465
- Micha Peleg and Maria G. Corradini “Microbial growth curves: what the models tell us and what they cannot” In Critical Reviews in Food Science and Nutrition 51.10 Taylor & Francis, 2011, pp. 917–945 DOI: 10.1080/10408398.2011.570463
- “Comparison of approaches for parameter identifiability analysis of biological systems” In Bioinformatics 30.10, 2014, pp. 1440–1448 DOI: 10.1093/bioinformatics/btu006
- “Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability” In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371.1984 Royal Society, 2013, pp. 20110544 DOI: 10.1098/rsta.2011.0544
- “Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood” In Bioinformatics 25.15, 2009, pp. 1923–1929 DOI: 10.1093/bioinformatics/btp358
- “Gap geometry dictates epithelial closure efficiency” In Nature Communications 6.1 Nature Publishing Group, 2015, pp. 7683 DOI: 10.1038/ncomms8683
- Marissa Renardy, Denise Kirschner and Marisa Eisenberg “Structural identifiability analysis of age-structured PDE epidemic models” In Journal of Mathematical Biology 84.1, 2022, pp. 9 DOI: 10.1007/s00285-021-01711-1
- Francis J. Richards “A flexible growth function for empirical use” In Journal of Experimental Botany 10.2, 1959, pp. 290–301 DOI: 10.1093/jxb/10.2.290
- Steven J. Ruuth “Implicit-explicit methods for reaction-diffusion problems in pattern formation” In Journal of Mathematical Biology 34, 1995, pp. 148–176 DOI: 10.1007/BF00178771
- Bram G. Sengers, Colin P. Please and Richard O.C. Oreffo “Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration” In Journal of The Royal Society Interface 4.17 Royal Society, 2007, pp. 1107–1117 DOI: 10.1098/rsif.2007.0233
- Jonathan A. Sherratt, James D. Murray and Bryan C. Clarke “Models of epidermal wound healing” In Proceedings of the Royal Society of London. Series B: Biological Sciences 241.1300 Royal Society, 1990, pp. 29–36 DOI: 10.1098/rspb.1990.0061
- “The tumor invasion paradox in cancer stem cell-driven solid tumors” In Bulletin of Mathematical Biology 84.12, 2022, pp. 139 DOI: 10.1007/s11538-022-01086-4
- “Parameter identifiability and model selection for sigmoid population growth models” In Journal of theoretical biology 535, 2022, pp. 110998 DOI: 10.1016/j.jtbi.2021.110998
- “Practical parameter identifiability for spatio-temporal models of cell invasion” In Journal of The Royal Society Interface 17.164 Royal Society, 2020, pp. 20200055 DOI: 10.1098/rsif.2020.0055
- “Quantifying the roles of cell motility and cell proliferation in a circular barrier assay” In Journal of The Royal Society Interface 10.82, 2013, pp. 20130007 DOI: 10.1098/rsif.2013.0007
- Vladimir M. Tikhomirov “A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem” In Selected works of AN Kolmogorov Springer, 1991, pp. 242–270
- Katrina K. Treloar and Matthew J. Simpson “Sensitivity of edge detection methods for quantifying cell migration assays” In PLoS ONE 8.6, 2013, pp. e67389 DOI: 10.1371/journal.pone.0067389
- “Analysis of logistic growth models” In Mathematical Biosciences 179.1, 2002, pp. 21–55 DOI: 10.1016/S0025-5564(02)00096-2
- “Assessment of prediction uncertainty quantification methods in systems biology” In IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, pp. 1–12 DOI: 10.1109/TCBB.2022.3213914
- “Mathematical models for cell migration with real-time cell cycle dynamics” In Biophysical Journal 114.5 Elsevier, 2018, pp. 1241–1253 DOI: 10.1016/j.bpj.2017.12.041
- David J. Warne, Ruth E. Baker and Matthew J. Simpson “Using experimental data and information criteria to guide model selection for reaction–diffusion problems in mathematical biology” In Bulletin of Mathematical Biology 81.6, 2019, pp. 1760–1804 DOI: 10.1007/s11538-019-00589-x
- “Generalised likelihood profiles for models with intractable likelihoods” arXiv, 2023 DOI: 10.48550/arXiv.2305.10710
- “On structural and practical identifiability” In Current Opinion in Systems Biology 25, 2021, pp. 60–69 DOI: 10.1016/j.coisb.2021.03.005
- Thomas P. Witelski “Merging traveling waves for the Porous-Fisher’s equation” In Applied Mathematics Letters 8.4, 1995, pp. 57–62 DOI: 10.1016/0893-9659(95)00047-T