Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed robust optimization for multi-agent systems with guaranteed finite-time convergence (2309.01201v1)

Published 3 Sep 2023 in math.OC, cs.MA, cs.SY, and eess.SY

Abstract: A novel distributed algorithm is proposed for finite-time converging to a feasible consensus solution satisfying global optimality to a certain accuracy of the distributed robust convex optimization problem (DRCO) subject to bounded uncertainty under a uniformly strongly connected network. Firstly, a distributed lower bounding procedure is developed, which is based on an outer iterative approximation of the DRCO through the discretization of the compact uncertainty set into a finite number of points. Secondly, a distributed upper bounding procedure is proposed, which is based on iteratively approximating the DRCO by restricting the constraints right-hand side with a proper positive parameter and enforcing the compact uncertainty set at finitely many points. The lower and upper bounds of the global optimal objective for the DRCO are obtained from these two procedures. Thirdly, two distributed termination methods are proposed to make all agents stop updating simultaneously by exploring whether the gap between the upper and the lower bounds reaches a certain accuracy. Fourthly, it is proved that all the agents finite-time converge to a feasible consensus solution that satisfies global optimality within a certain accuracy. Finally, a numerical case study is included to illustrate the effectiveness of the distributed algorithm.

Summary

We haven't generated a summary for this paper yet.