Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neurosymbolic Reinforcement Learning and Planning: A Survey (2309.01038v1)

Published 2 Sep 2023 in cs.AI and cs.LG

Abstract: The area of Neurosymbolic Artificial Intelligence (Neurosymbolic AI) is rapidly developing and has become a popular research topic, encompassing sub-fields such as Neurosymbolic Deep Learning (Neurosymbolic DL) and Neurosymbolic Reinforcement Learning (Neurosymbolic RL). Compared to traditional learning methods, Neurosymbolic AI offers significant advantages by simplifying complexity and providing transparency and explainability. Reinforcement Learning(RL), a long-standing Artificial Intelligence(AI) concept that mimics human behavior using rewards and punishment, is a fundamental component of Neurosymbolic RL, a recent integration of the two fields that has yielded promising results. The aim of this paper is to contribute to the emerging field of Neurosymbolic RL by conducting a literature survey. Our evaluation focuses on the three components that constitute Neurosymbolic RL: neural, symbolic, and RL. We categorize works based on the role played by the neural and symbolic parts in RL, into three taxonomies:Learning for Reasoning, Reasoning for Learning and Learning-Reasoning. These categories are further divided into sub-categories based on their applications. Furthermore, we analyze the RL components of each research work, including the state space, action space, policy module, and RL algorithm. Additionally, we identify research opportunities and challenges in various applications within this dynamic field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. K. Acharya (1 paper)
  2. W. Raza (1 paper)
  3. C. M. J. M. Dourado Jr (1 paper)
  4. A. Velasquez (1 paper)
  5. H. Song (93 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.