Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
146 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Bounds for Machine Unlearning via Differential Privacy (2309.00886v1)

Published 2 Sep 2023 in cs.LG

Abstract: We consider the formulation of "machine unlearning" of Sekhari, Acharya, Kamath, and Suresh (NeurIPS 2021), which formalizes the so-called "right to be forgotten" by requiring that a trained model, upon request, should be able to "unlearn" a number of points from the training data, as if they had never been included in the first place. Sekhari et al. established some positive and negative results about the number of data points that can be successfully unlearnt by a trained model without impacting the model's accuracy (the "deletion capacity"), showing that machine unlearning could be achieved by using differentially private (DP) algorithms. However, their results left open a gap between upper and lower bounds on the deletion capacity of these algorithms: our work fully closes this gap, obtaining tight bounds on the deletion capacity achievable by DP-based machine unlearning algorithms.

Citations (8)

Summary

We haven't generated a summary for this paper yet.