Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ObjectLab: Automated Diagnosis of Mislabeled Images in Object Detection Data (2309.00832v1)

Published 2 Sep 2023 in cs.CV and cs.LG

Abstract: Despite powering sensitive systems like autonomous vehicles, object detection remains fairly brittle in part due to annotation errors that plague most real-world training datasets. We propose ObjectLab, a straightforward algorithm to detect diverse errors in object detection labels, including: overlooked bounding boxes, badly located boxes, and incorrect class label assignments. ObjectLab utilizes any trained object detection model to score the label quality of each image, such that mislabeled images can be automatically prioritized for label review/correction. Properly handling erroneous data enables training a better version of the same object detection model, without any change in existing modeling code. Across different object detection datasets (including COCO) and different models (including Detectron-X101 and Faster-RCNN), ObjectLab consistently detects annotation errors with much better precision/recall compared to other label quality scores.

Citations (3)

Summary

We haven't generated a summary for this paper yet.