2000 character limit reached
On blow-up conditions for nonlinear higher order evolution inequalities (2309.00574v8)
Published 1 Sep 2023 in math.AP
Abstract: For the problem $$ \left{ \begin{aligned} & \partial_tk u - \sum_{|\alpha| = m} \partial\alpha a_\alpha (x, t, u) \ge f (|u|) \quad \mbox{in } {\mathbb R}+{n+1} = {\mathbb R}n \times (0, \infty), & u (x, 0) = u_0 (x), : \partial_t u (x, 0) = u_1 (x), \ldots, \partial_t{k-1} u (x, 0) = u{k-1} (x) \ge 0, \end{aligned} \right. $$ we obtain exact conditions on the function $f$ guaranteeing that any global weak solution is identically zero.