Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integral Quadratic Constraints with Infinite-Dimensional Channels (2309.00516v1)

Published 1 Sep 2023 in math.OC, math.AP, and math.DS

Abstract: Modern control theory provides us with a spectrum of methods for studying the interconnection of dynamic systems using input-output properties of the interconnected subsystems. Perhaps the most advanced framework for such input-output analysis is the use of Integral Quadratic Constraints (IQCs), which considers the interconnection of a nominal linear system with an unmodelled nonlinear or uncertain subsystem with known input-output properties. Although these methods are widely used for Ordinary Differential Equations (ODEs), there have been fewer attempts to extend IQCs to infinite-dimensional systems. In this paper, we present an IQC-based framework for Partial Differential Equations (PDEs) and Delay Differential Equations (DDEs). First, we introduce infinite-dimensional signal spaces, operators, and feedback interconnections. Next, in the main result, we propose a formulation of hard IQC-based input-output stability conditions, allowing for infinite-dimensional multipliers. We then show how to test hard IQC conditions with infinite-dimensional multipliers on a nominal linear PDE or DDE system via the Partial Integral Equation (PIE) state-space representation using a sufficient version of the Kalman-Yakubovich-Popov lemma (KYP). The results are then illustrated using four example problems with uncertainty and nonlinearity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.