Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Remixing-based Unsupervised Source Separation from Scratch (2309.00376v1)

Published 1 Sep 2023 in eess.AS and cs.SD

Abstract: We propose an unsupervised approach for training separation models from scratch using RemixIT and Self-Remixing, which are recently proposed self-supervised learning methods for refining pre-trained models. They first separate mixtures with a teacher model and create pseudo-mixtures by shuffling and remixing the separated signals. A student model is then trained to separate the pseudo-mixtures using either the teacher's outputs or the initial mixtures as supervision. To refine the teacher's outputs, the teacher's weights are updated with the student's weights. While these methods originally assumed that the teacher is pre-trained, we show that they are capable of training models from scratch. We also introduce a simple remixing method to stabilize training. Experimental results demonstrate that the proposed approach outperforms mixture invariant training, which is currently the only available approach for training a monaural separation model from scratch.

Citations (2)

Summary

We haven't generated a summary for this paper yet.