Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facing Unknown: Open-World Encrypted Traffic Classification Based on Contrastive Pre-Training (2308.16861v1)

Published 31 Aug 2023 in cs.CR

Abstract: Traditional Encrypted Traffic Classification (ETC) methods face a significant challenge in classifying large volumes of encrypted traffic in the open-world assumption, i.e., simultaneously classifying the known applications and detecting unknown applications. We propose a novel Open-World Contrastive Pre-training (OWCP) framework for this. OWCP performs contrastive pre-training to obtain a robust feature representation. Based on this, we determine the spherical mapping space to find the marginal flows for each known class, which are used to train GANs to synthesize new flows similar to the known parts but do not belong to any class. These synthetic flows are assigned to Softmax's unknown node to modify the classifier, effectively enhancing sensitivity towards known flows and significantly suppressing unknown ones. Extensive experiments on three datasets show that OWCP significantly outperforms existing ETC and generic open-world classification methods. Furthermore, we conduct comprehensive ablation studies and sensitivity analyses to validate each integral component of OWCP.

Citations (1)

Summary

We haven't generated a summary for this paper yet.