Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Point-TTA: Test-Time Adaptation for Point Cloud Registration Using Multitask Meta-Auxiliary Learning (2308.16481v2)

Published 31 Aug 2023 in cs.CV, cs.AI, and cs.LG

Abstract: We present Point-TTA, a novel test-time adaptation framework for point cloud registration (PCR) that improves the generalization and the performance of registration models. While learning-based approaches have achieved impressive progress, generalization to unknown testing environments remains a major challenge due to the variations in 3D scans. Existing methods typically train a generic model and the same trained model is applied on each instance during testing. This could be sub-optimal since it is difficult for the same model to handle all the variations during testing. In this paper, we propose a test-time adaptation approach for PCR. Our model can adapt to unseen distributions at test-time without requiring any prior knowledge of the test data. Concretely, we design three self-supervised auxiliary tasks that are optimized jointly with the primary PCR task. Given a test instance, we adapt our model using these auxiliary tasks and the updated model is used to perform the inference. During training, our model is trained using a meta-auxiliary learning approach, such that the adapted model via auxiliary tasks improves the accuracy of the primary task. Experimental results demonstrate the effectiveness of our approach in improving generalization of point cloud registration and outperforming other state-of-the-art approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ahmed Hatem (3 papers)
  2. Yiming Qian (32 papers)
  3. Yang Wang (672 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.