Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dilated convolutional neural network for detecting extreme-mass-ratio inspirals (2308.16422v3)

Published 31 Aug 2023 in astro-ph.IM, cs.LG, and gr-qc

Abstract: The detection of Extreme Mass Ratio Inspirals (EMRIs) is intricate due to their complex waveforms, extended duration, and low signal-to-noise ratio (SNR), making them more challenging to be identified compared to compact binary coalescences. While matched filtering-based techniques are known for their computational demands, existing deep learning-based methods primarily handle time-domain data and are often constrained by data duration and SNR. In addition, most existing work ignores time-delay interferometry (TDI) and applies the long-wavelength approximation in detector response calculations, thus limiting their ability to handle laser frequency noise. In this study, we introduce DECODE, an end-to-end model focusing on EMRI signal detection by sequence modeling in the frequency domain. Centered around a dilated causal convolutional neural network, trained on synthetic data considering TDI-1.5 detector response, DECODE can efficiently process a year's worth of multichannel TDI data with an SNR of around 50. We evaluate our model on 1-year data with accumulated SNR ranging from 50 to 120 and achieve a true positive rate of 96.3% at a false positive rate of 1%, keeping an inference time of less than 0.01 seconds. With the visualization of three showcased EMRI signals for interpretability and generalization, DECODE exhibits strong potential for future space-based gravitational wave data analyses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. A. Sesana, Phys. Rev. Lett. 116, 231102 (2016).
  2. P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E. Barausse, P. Bender, E. Berti, et al., “Laser Interferometer Space Antenna,”  (2017), 1702.00786 .
  3. W.-R. Hu and Y.-L. Wu, Natl. Sci. Rev. 4, 685 (2017).
  4. P. Auclair, D. Bacon, T. Baker, T. Barreiro, N. Bartolo, et al., “Cosmology with the Laser Interferometer Space Antenna,”  (2022), arxXiv:2204.05434 .
  5. LISA Science Study Team, LISA Science Requirements Document, Tech. Rep. ESA-L3-EST-SCI-RS-001 (\aclESA, 2018).
  6. W.-B. Han and X. Chen, Mon. Not. R. Astron. Soc.: Lett 485, L29 (2019).
  7. J. Gair and L. Wen, Class. Quantum Gravity 22, S1359 (2005).
  8. L. Wen and J. R. Gair, Class. Quantum Gravity 22, S445 (2005).
  9. J. Gair and G. Jones, Class. Quantum Gravity 24, 1145 (2007).
  10. D. George and E. A. Huerta, Phys. Rev. D 97, 044039 (2018).
  11. P. G. Krastev, Phys. Lett. B 803, 135330 (2020).
  12. V. Skliris, M. R. K. Norman,  and P. J. Sutton, “Real-Time Detection of Unmodelled Gravitational-Wave Transients Using Convolutional Neural Networks,”  (2022), arXiv:2009.14611 .
  13. A. Ravichandran, A. Vijaykumar, S. J. Kapadia,  and P. Kumar, “Rapid identification and classification of eccentric gravitational wave inspirals with machine learning,”  (2023), arXiv:2302.00666 .
  14. M. Razzano and E. Cuoco, Class. Quantum Gravity 35, 095016 (2018).
  15. L. Barack and C. Cutler, Phys. Rev. D 69, 082005 (2004).
  16. A. J. K. Chua and J. R. Gair, Class. Quantum Gravity 32, 232002 (2015).
  17. S. Bai, J. Z. Kolter,  and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,”  (2018), arXiv:1803.01271 .
  18. T. Salimans and D. P. Kingma, in Advances in Neural Information Processing Systems, Vol. 29 (Curran Associates, Inc., 2016).
  19. C. M. Bishop, Pattern Recognition and Machine Learning, softcover reprint of the original 1st edition 2006 (corrected at 8th printing 2009) ed., Information Science and Statistics (Springer New York, New York, NY, 2016).
Citations (6)

Summary

We haven't generated a summary for this paper yet.