Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the Accuracy of Transaction-Based Ponzi Detection on Ethereum (2308.16391v2)

Published 31 Aug 2023 in cs.CR, cs.CE, cs.LG, and q-fin.ST

Abstract: The Ponzi scheme, an old-fashioned fraud, is now popular on the Ethereum blockchain, causing considerable financial losses to many crypto investors. A few Ponzi detection methods have been proposed in the literature, most of which detect a Ponzi scheme based on its smart contract source code. This contract-code-based approach, while achieving very high accuracy, is not robust because a Ponzi developer can fool a detection model by obfuscating the opcode or inventing a new profit distribution logic that cannot be detected. On the contrary, a transaction-based approach could improve the robustness of detection because transactions, unlike smart contracts, are harder to be manipulated. However, the current transaction-based detection models achieve fairly low accuracy. In this paper, we aim to improve the accuracy of the transaction-based models by employing time-series features, which turn out to be crucial in capturing the life-time behaviour a Ponzi application but were completely overlooked in previous works. We propose a new set of 85 features (22 known account-based and 63 new time-series features), which allows off-the-shelf machine learning algorithms to achieve up to 30% higher F1-scores compared to existing works.

Summary

We haven't generated a summary for this paper yet.