Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Parameter-Free Two-Bit Covariance Estimator with Improved Operator Norm Error Rate (2308.16059v2)

Published 30 Aug 2023 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: A covariance matrix estimator using two bits per entry was recently developed by Dirksen, Maly and Rauhut [Annals of Statistics, 50(6), pp. 3538-3562]. The estimator achieves near minimax rate for general sub-Gaussian distributions, but also suffers from two downsides: theoretically, there is an essential gap on operator norm error between their estimator and sample covariance when the diagonal of the covariance matrix is dominated by only a few entries; practically, its performance heavily relies on the dithering scale, which needs to be tuned according to some unknown parameters. In this work, we propose a new 2-bit covariance matrix estimator that simultaneously addresses both issues. Unlike the sign quantizer associated with uniform dither in Dirksen et al., we adopt a triangular dither prior to a 2-bit quantizer inspired by the multi-bit uniform quantizer. By employing dithering scales varying across entries, our estimator enjoys an improved operator norm error rate that depends on the effective rank of the underlying covariance matrix rather than the ambient dimension, thus closing the theoretical gap. Moreover, our proposed method eliminates the need of any tuning parameter, as the dithering scales are entirely determined by the data. Experimental results under Gaussian samples are provided to showcase the impressive numerical performance of our estimator. Remarkably, by halving the dithering scales, our estimator oftentimes achieves operator norm errors less than twice of the errors of sample covariance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.