Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breaking the Interference and Fading Gridlock in Backscatter Communications: State-of-the-Art, Design Challenges, and Future Directions (2308.16031v2)

Published 30 Aug 2023 in cs.IT and math.IT

Abstract: As the Internet of Things (IoT) advances by leaps and bounds, a multitude of devices are becoming interconnected, marking the onset of an era where all things are connected. While this growth opens up opportunities for novel products and applications, it also leads to increased energy demand and battery reliance for IoT devices, creating a significant bottleneck that hinders sustainable progress. At this juncture, backscatter communication (BackCom), as a low-power and passive communication method, emerges as one of the promising solutions to this energy impasse by reducing the manufacturing costs and energy consumption of IoT devices. However, BackCom systems face challenges such as complex interference environments, including direct link interference (DLI) and mutual interference (MI) between tags, which can severely disrupt the efficiency of BackCom networks. Moreover, double-path fading is another major issue that leads to the degraded system performance. To fully unleash the potential of BackComs, the purpose of this paper is to furnish a comprehensive review of existing solutions with a focus on combatting these specific interference challenges and overcoming dual-path fading, offering an insightful analysis and comparison of various strategies for effectively mitigating these issues. Specifically, we begin by introducing the preliminaries for the BackCom, including its history, operating mechanisms, main architectures, etc, providing a foundational understanding of the field. Then, we delve into fundamental issues related to BackCom systems, such as solutions for the DLI, the MI, and the double-path fading. This paper thoroughly provides state-of-the-art advances for each case, particularly highlighting how the latest innovations in theoretical approaches and system design can strategically address these challenges.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (225)
  1. Y. Liu, D. Li, B. Du, L. Shu, and G. Han, “Rethinking sustainable sensing in agricultural Internet of Things: From power supply perspective,” IEEE Wireless Commun., vol. 29, no. 4, pp. 102–109, Aug. 2022.
  2. S. Sinha, “State of IoT 2023: Number of connected IoT devices growing 16% to 16.7 billion globally,” Website, May. 2023. https://iot-analytics.com/number-connected-iot-devices/.
  3. S. Griffiths, “Why your internet habits are not as clean as you think,” Website, Mar. 2020. https://www.bbc.com/future/article/20200305-why-your-internet-habits-are-not-as-clean-as-you-think.
  4. C. Glickman, “Green IoT: The shift to practical sustainability,” Jul. 2023. https://cio.economictimes.indiatimes.com/news/internet-of-things/patents-need-to-be-part-of-cutting-edge-products-rajaraman/101456241.
  5. D. Ma, G. Lan, M. Hassan, W. Hu, and S. K. Das, “Sensing, computing, and communications for energy harvesting IoTs: A survey,” IEEE Commun. Surveys Tut., vol. 22, no. 2, pp. 1222–1250, 2nd Quart. 2020.
  6. V. Pecunia, L. G. Occhipinti, and R. L. Z. Hoye, “Emerging indoor photovoltaic technologies for sustainable Internet of Things,” Adv. Energy Mater., vol. 11, no. 29, pp. 1–31, Aug. 2021.
  7. 3GPP RP-222685, “Study on Ambient IoT,” Huawei, HiSilicon, RAN#97e, Sept. 2022.
  8. 3GPP RP-232408, “Discussion on feasibility assessment and required functionalities for Ambient IoT,” Huawei, HiSilicon, RAN#101, Sept. 2023.
  9. 3GPP S2-2310033, “Study on Architecture support of Ambient power-enabled Internet of Things,” OPPO, SA2#160, Nov. 2023.
  10. 3GPP TR 38.848, “Study on Ambient IoT (Internet of Things) in RAN,” Sept. 2023. https://www.3gpp.org/ftp/Specs/archive/38_series/38.848/.
  11. C. Yang, J. Gummeson, and A. Sample, “Riding the airways: Ultrawideband ambient backscatter via commercial broadcast systems,” in Proc. IEEE INFOCOM’17, May 2017, pp. 1–9.
  12. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature, vol. 455, no. 7214, pp. 778–781, 2008.
  13. H. Solar, A. Beriain, A. Rezola, D. del Rio, and R. Berenguer, “A 22-m operation range semi-passive UHF RFID sensor tag with flexible thermoelectric energy harvester,” IEEE Sensors J., vol. 22, no. 20, pp. 19797–19808, Oct. 2022.
  14. H. S. Kim, J. -H. Kim, and J. Kim, “A review of piezoelectric energy harvesting based on vibration,” Int. J. Precision Eng. Manuf., vol. 12, no. 6, pp. 1129–1141, Dec. 2011.
  15. S. Bi, Y. Zeng, and R. Zhang, “Wireless powered communication networks: An overview,” IEEE Wireless Commun., vol. 23, no. 2, pp. 10–18, Apr. 2016.
  16. S. Duhovnikov, A. Baltaci, D. Gera, and D. A. Schupke, “Power consumption analysis of NB-IoT technology for low-power aircraft applications,” in Proc. IEEE WF-IoT’19, Apr. 2019, pp. 719–723.
  17. R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, and C. V. Hoof, “Energy harvesting for autonomous wireless sensor networks,” IEEE Solid-State Circuits Mag., vol. 2, no. 2, pp. 29–38, Jun. 2010.
  18. C. Xu, L. Yang, and P. Zhang, “Practical backscatter communication systems for battery-free Internet of Things: A tutorial and survey of recent research,” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 16–27, Sept. 2018.
  19. A. Bletsas, P. N. Alevizos, and G. Vougioukas, “The art of signal processing in backscatter radio for μ𝜇\muitalic_μW (or less) Internet of Things: Intelligent signal processing and backscatter radio enabling batteryless connectivity,” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 28–40, Sept. 2018.
  20. P. -H. P. Wang, C. Zhang, H. Yang, D. Bharadia, and P. P. Mercier, “A 28μ𝜇\muitalic_μW IoT tag that can communicate with commodity WiFi transceivers via a single-side-band QPSK backscatter communication technique,” in Proc. IEEE ISSCC, Apr. 2020, pp. 312–314.
  21. L. Lin, K. A. Ahmed, P. S. Salamani, and M. Alioto, “Battery-less IoT sensor node with PLL-less WiFi backscattering communications in a 2.5-μ𝜇\muitalic_μW peak power envelope,” in Proc. Symp. VLSI Circuits, Jun. 2021, pp. 1-2.
  22. J. Kimionis, A. Bletsas, and J. N. Sahalos, “Increased range bistatic scatter radio,” IEEE Trans. Commun., vol. 62, no. 3, pp. 1091–1104, Mar 2014.
  23. G. Khadka, M. Nemati, X. Zhou, and J. Choi, “Index modulation in backscatter communication for IoT-sensor-based applications: A review,” IEEE Sensors J., vol. 22, no. 22, pp. 21445–21461, Nov. 2022.
  24. F. R. REZAEIDINDARLOO, D. Galappaththige, C. Tellambura, and S. Herath, “Coding techniques for backscatter communications—A contemporary survey,” IEEE Commun. Surveys Tut., vol. 25, no. 2, pp. 1020–1058, 2nd Quart. 2023.
  25. W. Chen, “Survey of Millimeter wave backscatter communition systems,” arXiv preprint arXiv:2305.10302, 2023.
  26. J. P. Shanmuga Sundaram, W. Du, and Z. Zhao, “A survey on LoRa networking: Research problems, current solutions, and open Issues,” IEEE Commun. Surveys Tut., vol. 22, no. 1, pp. 371–388, 1st Quart. 2020.
  27. N. Van Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim, “Ambient backscatter communications: A contemporary survey,” IEEE Commun. Surveys Tut., vol. 20, no. 4, pp. 2889–2922, 4th Quart. 2018.
  28. J. -P. Niu and G. Y. Li, “An overview on backscatter communications,” J. Commun. Information Netw., vol. 4, no. 2, pp. 1–14, Jun. 2019.
  29. M. L. Memon, N. Saxena, A. Roy, and D. R. Shin, “Backscatter communications: Inception of the battery-free eraa comprehensive survey,” Electronics, vol. 8, no. 2, p. 129, Feb. 2019.
  30. C. Yao, Y. Liu, X. Wei, G. Wang, and F. Gao, “Backscatter technologies and the future of Internet of Things: Challenges and opportunities,” Intelligent and Converged Netw., vol. 1, no. 2, pp. 170–180, Sept. 2020.
  31. W. Liu, K. Huang, X. Zhou, and S. Durrani, “Next generation backscatter communication: Systems, techniques, and applications,” EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, pp. 1–11, Mar. 2019.
  32. M. Stanacevic, A. Athalye, Z. J. Haas, S. R. Das, and P. M. Djuric, “Backscatter communications with passive receivers: From fundamentals to applications,” ITU J. Future and Evolving Technologies, vol. 1, no. 1, Dec. 2020.
  33. F. Rezaei, C. Tellambura, and S. Herath, “Large-scale wireless-powered networks with backscatter communications—A comprehensive Survey,” IEEE Open J. Commun. Society, vol. 1, pp. 1100–1130, 2020.
  34. U. S. Toro, K. Wu, and V. C. M. Leung, “Backscatter wireless communications and sensing in green Internet of Things,” IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp. 37–55, Mar. 2022.
  35. D. A. Loku Galappaththige, F. Rezaei, C. Tellambura, and S. Herath, “Link budget analysis for backscatter-based passive IoT,” IEEE Access, vol. 10, pp. 128890–128922, 2022.
  36. W. Wu, X. Wang, A. Hawbani, L. Yuan, and W. Gong, “A survey on ambient backscatter communications: Principles, systems, applications, and challenges,” Computer Networks, p. 109235, Oct., 2022.
  37. A. G. Bell, “The photophone,” Science (80-.)., vol. 1, no. 11, pp. 130–134, 1880.
  38. P. Nikitin, “Leon Theremin (Lev Termen),” IEEE Antennas Propag. Mag., vol. 54, no. 5, pp. 252–257, Oct. 2012.
  39. H. Stockman, “Communication by means of reflected power,” in Proc. IRE, vol. 36, no. 10, pp. 1196–1204, Oct. 1948.
  40. D. B. Harris, “Radio transmission systems with modulatable passive responder,” 1960.
  41. C. Boyer and S. Roy. “Backscatter communication and RFID: Coding, energy, and MIMO analysis.” IEEE Trans. Commun., vol. 62, no. 3, 770-785, Mar. 2014.
  42. J. R. Smith, A. P. Sample, P. S. Powledge, S. Roy, and A. Mamishev, “A wirelessly powered platform for sensing and computation,” in Proc. 8th Int. Conf. Ubiquitous Comput., 2006, vol. 4206, pp. 495-506.
  43. A. Varshney, A. Soleiman, and T. Voigt, “TunnelScatter: Low power communication for sensor tags using tunnel diodes,” in Proc. 25th Annu. Int. Conf. Mobile Comput. Netw. Aug. 2019, pp. 1–17.
  44. R. Jantti, R. Duan, J. Lietzen, H. Khalifa, and L. Hanzo, “Quantum-enhanced microwave backscattering communications,” IEEE Commun, Mag., vol. 58, no. 1, pp. 80–85, Jan. 2020.
  45. R. Long, Y. -C. Liang, H. Guo, G. Yang, and R. Zhang, “Symbiotic radio: A new communication paradigm for passive Internet of Things,” IEEE Internet Things J., vol. 7, no. 2, pp. 1350–1363, Feb. 2020.
  46. Y. Zhao and B. Clerckx, “RIScatter: Unifying backscatter communication and reconfigurable intelligent surface,“ arXiv preprint arXiv:2212.09121, Dec. 2022.
  47. Z. Gong, L. Han, Z. An, L. Yang, S. Ding, and Y. Xiang, “Empowering smart buildings with self-sensing concrete for structural health monitoring,” in Proc. ACM SIGCOMM Conf., Aug. 2022, pp. 560–575.
  48. S. -N. Daskalakis, J. Kimionis, A. Collado, M. M. Tentzeris, and A. Georgiadis, “Ambient FM backscattering for smart agricultural monitoring,” in Proc. IEEE MTT-S IMS, 2017, pp. 1339–1341.
  49. W. U. Khan, M. A. Javed, T. N. Nguyen, S. Khan, and B. M. Elhalawany, “Energy-efficient resource allocation for 6G backscatter-enabled NOMA IoV networks,” IEEE Trans. Intelligent Transportation Syst., vol. 23, no. 7, pp. 9775–9785, July 2022.
  50. F. Jameel, R. Duan, Z. Chang, A. Liljemark, T. Ristaniemi, and R. Jantti, “Applications of backscatter communications for healthcare networks,” IEEE Netw., vol. 33, no. 6, pp. 50-57, Nov.–Dec. 2019.
  51. D. -T. Phan-Huy, D. Barthel, P. Ratajczak, R. Fara, M. d. Renzo, and J. d. Rosny, “Ambient backscatter communications in mobile networks: Crowd-detectable zero-energy-devices,” in Proc. IEEE RFID-TA, 2021, pp. 81–84.
  52. J. Jang and F. Adib, “Underwater backscatter networking,” in Proc. ACM Special Interest Group Data Commun., Aug. 2019, pp. 187–199.
  53. X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks with RF energy harvesting: A contemporary survey,” IEEE Commun. Surveys Tut., vol. 17, no. 2, pp. 757–789, 2nd Quart. 2015.
  54. Y. Chen, K. T. Sabnis, and R. A. Abd-Alhameed, “New formula for conversion efficiency of RF EH and its wireless applications,” IEEE Trans. Veh. Tech., vol. 65, no. 11, pp. 9410–9414, Nov. 2016.
  55. X. Gu, S. Hemour, and K. Wu, “Far-field wireless power harvesting: Nonlinear modeling, rectenna design, and emerging applications,” Proceedings of the IEEE, vol. 110, no. 1, pp. 56–73, Jan. 2022.
  56. G. Lu, L. Shi, and Y. Ye, “Maximum throughput of TS/PS scheme in an AF relaying network with non-linear energy harvester,” IEEE Access, vol. 6, pp. 26617–26625, May 2018.
  57. E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical non-linear energy harvesting model and resource allocation for SWIPT systems,” IEEE Commun. Lett., vol. 19, no. 12, pp. 2082–2085, Dec. 2015.
  58. S. Wang, M. Xia, K. Huang, and Y. -C. Wu, “Wirelessly powered two-way communication with nonlinear energy harvesting model: Rate regions under fixed and mobile relay,” IEEE Trans. Wireless Commun., vol. 16, no. 12, pp. 8190–8204, Dec. 2017.
  59. J. Zhao, W. Gong, and J. Liu, “Spatial stream backscatter using commodity wifi,” in Proc. of ACM MobiSys, Jun. 2018. pp. 191–203.
  60. F. Amato, H. M. Torun, and G. D. Durgin, “RFID backscattering in long-range scenarios,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2718–2725, Apr. 2018.
  61. A. Eid, J. Rademacher, W. Akbar, P. Wang, A. Allam, and F. Adib, “Enabling long-range underwater backscatter via Van Atta acoustic networks,” in Proc. ACM SIGCOMM ’23, 2023, pp. 1–19.
  62. A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota, “FM backscatter: Enabling connected cities and smart fabrics,” in Proc. 14th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2017, pp. 243–258.
  63. Z. Chi, X. Liu, W. Wang, Y. Yao, and T. Zhu, “Leveraging ambient LTE traffic for ubiquitous passive communication,” in Proc. ACM SIGCOMM’20, Aug. 2020, pp. 172–185.
  64. P. Zhang, D. Bharadia, K. Joshi, and S. Katti, “HitchHike:Practical backscatter using commodity WiFi,” in Proc. 14th ACM Conf. Embedded Netw. Sensor Syst. CD-ROM, Nov. 2016, pp. 259–271.
  65. P. Zhang, C. Josephson, D. Bharadia, and S. Katti, “Freerider: Backscatter communication using commodity radios,” in Proc. CoNEXT, 2017, pp. 389–401.
  66. Wang, Shixin, Zhaoyuan Xu, and Wei Gong, “Poster: Enhanced ZigBee backscatter communication using fine-grained chip-level modulation.” in Proc. MobiSys’23. Jun. 2023. pp. 565–566.
  67. A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith, “Turbocharging ambient backscatter communication,” in Proc. ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 619–630, Oct. 2014.
  68. Z. Kapetanovic, A. Saffari, R. Chandra, and J. R. Smith, “Glaze: Overlaying occupied spectrum with downlink iot transmissions,” in Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 3, no. 4, Dec. 2019.
  69. J. Hu, L. Zhong, T. Ma, Z. Ding, and Z. Xu, “Long-range FM backscatter tag with tunnel diode,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 1, pp. 92–95, Jan. 2022.
  70. Y. Feng, S. Chen, W. Xi, S. Wang, J. Zhao, and W. Gong, “Heartbeating with LTE networks for ambient backscatter,” IEEE Trans. Mobile Comput., early access. Jun. 2023. doi: 10.1109/TMC.2023.3290298.
  71. X. Liu, Z. Chi, W. Wang, Y. Yao, and T. Zhu, “VMscatter: A versatile MIMO backscatter,” in Proc. USENIX NSDI’20, Feb. 2020, pp. 895–909.
  72. M. Dunna, M. Meng, P.-H. Wang, C. Zhang, P. P. Mercier, and D. Bharadia, “Syncscatter: Enabling wifi like synchronization and range for wifi backscatter communication.” in Proc. of USENIX NSDI, 2021.
  73. L. Yuan and W. Gong, “SubScatter: Sub-symbol WiFi backscatter for high throughput,” in Proc. IEEE ICNP, 2022, pp. 1–11.
  74. J. Rosenthal and M. S. Reynolds, “A 1.0-Mb/s 198-pJ/bit Bluetooth low-energy compatible single sideband backscatter uplink for the NeuroDisc brain–computer interface,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 10, pp. 4015–4022, Oct. 2019.
  75. M. Zhang, J. Zhao, S. Chen, and W. Gong, “Reliable backscatter with commodity ble,” in Proc. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 1291–1299, 2020.
  76. W. Gong, L. Yuan, Q. Wang, and J. Zhao, “Multiprotocol backscatter for personal iot sensors,” in Proc. of ACM CONEXT, Nov. 2020, pp. 261–273.
  77. M. Zhang, S. Chen, J. Zhao, and W. Gong, “Commodity-level BLE backscatter,” in Proc. MobiSys’21, Jun. 2021, pp. 402–414.
  78. X. Guo, L. Shangguan, Y. He, J. Zhang, H. Jiang, A. A. Siddiqi, and Y. Liu, “Aloba: Rethinking ON-OFF keying modulation for ambient LoRa backscatter,” in Proc. 18th Conf. Embedded Networked Sensor Syst. 2020, pp. 192–204.
  79. J. Jiang, Z. Xu, F. Dang, and J. Wang, “Long-range ambient LoRa backscatter with parallel decoding,” in Proc. 27th Annu. Int. Conf. Mobile Comput. Netw., 2021, pp. 684–696.
  80. X. Guo, L. Shangguan, Y. He, N. Jing, J. Zhang, H. Jiang, and Y. Liu, “Saiyan: Design and implementation of a low-power demodulator for lora backscatter systems,” in Proc. of USENIX NSDI, Apr. 2022, pp. 437–451.
  81. A. Bletsas, S. Siachalou, and J. N. Sahalos, “Anti-collision backscatter sensor networks,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 5018–5029, Oct. 2009.
  82. S. Zhou, W. Xu, K. Wang, C. Pan, M. -S. Alouini, and A. Nallanathan, “Ergodic rate analysis of cooperative ambient backscatter communication,” IEEE Wireless Commun. Lett., vol. 8, no. 6, pp. 1679–1682, Dec. 2019.
  83. B. Gu, H. Xie, and D. Li, “Act before another is aware: Safeguarding backscatter systems with covert communications,” IEEE Wireless Commun. Lett., vol. 12, no. 6, pp. 1106–1110, Jun. 2023.
  84. H. Yang, H. Ding, M. Elkashlan, H. Li, and K. Xin, “A novel symbiotic backscatter-NOMA system,” IEEE Trans. Veh.Tech., vol. 72, no. 8, pp. 11006–11011, Aug. 2023.
  85. T. Brauner and X. Zhao, “A novel carrier suppression method for RFID,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 128–130, Mar. 2009.
  86. D. P. Villame and J. S. Marciano, “Carrier suppression locked loop mechanism for UHF RFID readers,” in Proc. IEEE RFID, 2010, pp. 141-145.
  87. Q. Tao, Y. Li, C. Zhong, S. Shao, and Z. Zhang, “A novel interference cancellation scheme for bistatic backscatter communication systems,” IEEE Commun. Lett., vol. 25, no. 6, pp. 2014–2018, Jun. 2021.
  88. R. Luo, H. Yang, C. Meng, and X. Zhang, “A novel SR-DCSK-based ambient backscatter communication system,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 1707–1711, Mar. 2022.
  89. S. Li, H. Zheng, C. Zhang, Y. Song, S. Yang, M. Chen, L. Lu, and M. Li, “Passive DSSS: Empowering the downlink communication for backscatter systems,” in Proc. of USENIX NSDI, 2022. pp. 913-928.
  90. W. Guo, H. Zhao, C. Song, S. Shao, and Y. Tang, “Direct-link interference cancellation design for backscatter communications over ambient DVB signals,” IEEE Trans. Broadcasting, vol. 68, no. 2, pp. 317–330, Jun. 2022.
  91. D. Li, H. Zhang, and L. Fan, “Adaptive mode selection for backscatter-assisted communication systems with opportunistic SIC,” IEEE Trans. Veh. Tech., vol. 69, no. 2, pp. 2327–2331, Feb. 2020.
  92. J. D. Rosenthal and M. S. Reynolds, “Hardware-efficient all-digital architectures for OFDM backscatter modulators,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 803–811, Jan. 2021.
  93. G. Yang, Y.-C. Liang, R. Zhang, and Y. Pei, “Modulation in the air: Backscatter communication over ambient OFDM carrier,” IEEE Trans. Commun., vol. 66, no. 3, pp. 1219–1233, Mar. 2018.
  94. G. Yang, Q. Zhang, and Y. -C. Liang, “Cooperative ambient backscatter communications for green Internet-of-Things,” IEEE Internet Things J., vol. 5, no. 2, pp. 1116–1130, Apr. 2018.
  95. M. A. ElMossallamy, M. Pan, R. Jäntti, K. G. Seddik, G. Y. Li, and Z. Han, “Noncoherent backscatter communications over ambient OFDM signals,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3597–3611, May 2019.
  96. P. Zhang, M. Rostami, P. Hu, and D. Ganesan, “Enabling practical backscatter communication for on-body sensors,” in Proc. ACM SIGCOMM, Aug. 2016, pp. 370–383.
  97. D. Li, “Capacity of backscatter communication with frequency shift in Rician fading channels,” IEEE Wireless Commun. Lett., vol. 8, no. 6, pp. 1639–1643, Dec. 2019.
  98. D. Li and Y.-C. Liang, “Price-based bandwidth allocation for backscatter communication with bandwidth constraints,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5170–5180, Nov. 2019.
  99. Y. Ding, R. Lihakanga, R. Correia, G. Goussetis, and N. B. Carvalho, “Harmonic suppression in frequency shifted backscatter communications,” IEEE Open J. Commun. Society, vol. 1, pp. 990–999, 2020.
  100. M. Rostami, K. Sundaresan, E. Chai, S. Rangarajan, and D. Ganesan, “Redefining passive in backscattering with commodity devices,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw., 2020, pp. 1–13.
  101. R. Fara, D.-T. Phan-Huy, A. Ourir, Y. Kokar, J.-C. Prevotet, M. Helard, M. Di Renzo, and J. De Rosny, “Polarization-based reconfigurable tags for robust ambient backscatter communications,” IEEE Open J. Commun. Soc., vol. 1, pp. 1140–1152, 2020.
  102. J. Lietzén, A. Liljemark, R. Duan, R. Jäntti, and V. Viikari, “Polarization conversion-based ambient backscatter system,” IEEE Access, vol. 8, pp. 216793–216804, 2020.
  103. A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith, “Turbocharging ambient backscatter communication,” in Proc. ACM SIGCOMM, Aug. 2014, pp. 619–630.
  104. H. Guo, Q. Zhang, S. Xiao, and Y. -C. Liang, “Exploiting multiple antennas for cognitive ambient backscatter communication,” IEEE Internet Things J., vol. 6, no. 1, pp. 765–775, Feb. 2019.
  105. R. Duan, E. Menta, H. Yigitler, R. Jantti, and Z. Han, “Hybrid beamformer design for high dynamic range ambient backscatter receivers,” in Proc. IEEE ICC Workshops, May 2019, pp. 1–6.
  106. D. Li, “Backscatter communication powered by selective relaying,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14037–14042, Nov. 2020.
  107. K. Ahmet, J. Vieira, and E. G. Larsson. “Direct link interference suppression for bistatic backscatter communication in distributed MIMO,” IEEE Trans. Wireless Commun., early access. 2023. doi: 10.1109/TWC.2023.3285250.
  108. F. Zhu, Y. Feng, Q. Li, X. Tian, and X. Wang, “DigiScatter: Efficiently prototyping large-scale OFDMA backscatter networks,” in Proc. ACM MobiSys, Jun. 2020, pp. 42–53.
  109. Y. Xu, B. Gu, R. Q. Hu, D. Li, and H. Zhang, “Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks,” IEEE Trans. Veh. Tech., vol. 70, no. 6, pp. 6200–6205, Jun. 2021.
  110. Y. Xu, B. Gu, and D. Li, “Robust energy-efficient optimization for secure wireless-powered backscatter communications with a non-linear EH model,” IEEE Commun. Lett., vol. 25, no. 10, pp. 3209–3213, Oct. 2021.
  111. Z. Ling, F. Hu, Y. Zhang, L. Fan, F. Gao, and Z. Han, “Distributionally robust chance-constrained backscatter communication-assisted computation offloading in WBANs,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3395–3408, May 2021.
  112. Y. Ye, L. Shi, X. Chu, G. Lu, and S. Sun, “Mutualistic cooperative ambient backscatter communications under hardware impairments,” IEEE Trans. Commun., vol. 70, no. 11, pp. 7656–7668, Nov. 2022.
  113. C. Psomas and I. Krikidis, “Collision avoidance in wireless powered sensor networks with backscatter communications,” in Proc. IEEE SPAWC, Dec. 2017, pp. 1–5.
  114. Y. Igarashi, Y. Sato, Y. Kawakita, J. Mitsugi, and H. Ichikawa, “A feasibility study on simultaneous data collection from multiple sensor RF tags with multiple subcarriers,” in Proc. IEEE RFID, May. 2014, pp. 141-146.
  115. N. Rajoria, H. Kamei, J. Mitsugi, Y. Kawakita, and H. Ichikawa, “Multi-carrier backscatter communication system for concurrent wireless and batteryless sensing,” in Proc. IEEE WiSPNET, Feb. 2018, pp. 1078-1082.
  116. J. Mitsugi, Y. Kawakita, K. Egawa, and H. Ichikawa, “Perfectly synchronized streaming from digitally modulated multiple backscatter sensor tags,” in Proc. IEEE RFID-TA, Dec. 2018, pp. 1-6.
  117. D. Li, “Fairness-based multiuser scheduling for ambient backscatter communication systems,” IEEE Wireless Commun. Lett., vol. 9, no. 8, pp. 1150–1154, Aug. 2020.
  118. Y. H. Al-Badarneh, M. -S. Alouini, and C. N. Georghiades, “Performance analysis of monostatic multi-tag backscatter systems with general order tag selection,” IEEE Wireless Commun. Lett., vol. 9, no. 8, pp. 1201–1205, Aug. 2020.
  119. Y. Liu, Y. Ye, and R. Q. Hu, “Secrecy outage probability in backscatter communication systems with tag selection,” IEEE Wireless Commun. Lett., vol. 10, no. 10, pp. 2190–2194, Oct. 2021.
  120. D. Deng, X. Li, S. Dang, and K. Rabie, “Outage analysis for tag selection in reciprocal backscatter communication systems,” IEEE Wireless Commun. Lett., vol. 11, no. 2, pp. 210–214, Feb. 2022.
  121. C. Yang, X. Wang, and K. -W. Chin, “On max–min throughput in backscatter-assisted wirelessly powered IoT,” IEEE Internet of Things J., vol. 7, no. 1, pp. 137–147, Jan. 2020.
  122. D. Han and H. Minn, “Coverage probability analysis under clustered ambient backscatter nodes,” IEEE Wireless Commun. Lett., vol. 8, no. 6, pp. 1713–1717, Dec. 2019.
  123. Q. Wang, Y. Zhou, H. -N. Dai, G. Zhang, and W. Zhang, “Performance on cluster backscatter communication networks with coupled interferences,” IEEE Internet Things J., vol. 9, no. 20, pp. 20282–20294, Oct. 2022.
  124. A. Almaaitah, H. S. Hassanein, and M. Ibnkahla, “Tag modulation silencing: Design and application in RFID anti-collision protocols,” IEEE Trans. Commun., vol. 62, no. 11, pp. 4068–4079, Nov. 2014.
  125. J. Wang, H. Hassanieh, D. Katabi, and P. Indyk, “Efficient and reliable low-power backscatter networks,” in Proc. ACM SIGCOMM, 2012, pp. 61–72.
  126. P. Hu, P. Zhang, and D. Ganesan, “Laissez-faire: Fully asymmetric backscatter communication,” in Proc. ACM SIGCOMM, 2015, pp. 255–267.
  127. P. Hu, P. Zhang, and D. Ganesan, “Leveraging interleaved signal edges for concurrent backscatter,” in Proc. SIGMOBILE Mobile Comput. Commun. Rev., vol. 18, no. 3, Jan. 2015, pp. 26–31.
  128. J. Ou, M. Li, and Y. Zheng, “Come and be served: Parallel decoding for cots RFID tags,” in Proc. Annu. Int. Conf. Mobile Comput. Netw., 2015, pp. 500–511.
  129. M. Jin, Y. He, X. Meng, Y. Zheng, D. Fang, and X. Chen, “Fliptracer: Practical parallel decoding for backscatter communication,” in Proc. 23rd Annu. Int. Conf. Mobile Computing and Networking, 2017, pp. 275–287.
  130. M. Jin, Y. He, X. Meng, D. Fang, and X. Chen, “Parallel backscatter in the wild: When burstiness and randomness play with you,” in Proc. Annu. Int. Conf. Mobile Comput. Netw., Oct. 2018, pp. 471–485.
  131. W. Liu, K. Huang, X. Zhou, and S. Durrani, “Full-duplex backscatter interference networks based on time-hopping spread spectrum,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4361–4377, Jul. 2017.
  132. J. Guo, S. Durrani, and X. Zhou, “Monostatic backscatter system with multi-tag to reader communication,” IEEE Trans. Veh.Tech., vol. 68, no. 10, pp. 10320–10324, Oct. 2019.
  133. X. Cao, Z. Song, B. Yang, M. A. Elmossallamy, L. Qian, and Z. Han, “A distributed ambient backscatter MAC protocol for Internet-of-Things networks,” IEEE Internet Things J., vol. 7, no. 2, pp. 1488–1501, Feb. 2020.
  134. H. Ding, M. Elkashlan, H. Yang, H. Li, and K. Xin, “Symbiotic backscatter system over cascaded fading channels,” in Proc. IEEE VTC2022-Fall, 2022, pp. 1–7.
  135. D. Li, “Hybrid active and passive antenna selection for backscatter-assisted MISO systems,” IEEE Trans. Commun., vol. 68, no. 11, pp. 7258–7269, Nov. 2020.
  136. A. E. Mostafa and V. W. S. Wong, “Transmit or backscatter: Communication mode selection for narrowband IoT systems,” IEEE Trans. Veh. Tech., vol. 71, no. 5, pp. 5477–5491, May 2022.
  137. D. Li, W. Peng, and Y. -C. Liang, “Hybrid ambient backscatter communication systems with harvest-then-transmit protocols,” IEEE Access, vol. 6, pp. 45288–45298, 2018.
  138. D. Li, “Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1405–1416, Mar. 2020.
  139. B. Gu, Y. Xu, C. Huang, and R. Q. Hu, “Energy-efficient resource allocation for OFDMA-based wireless-powered backscatter communications,” in Proc. IEEE ICC, 2021, pp. 1–6.
  140. L. Shi, R. Q. Hu, J. Gunther, Y. Ye, and H. Zhang, “Energy efficiency for RF-powered backscatter networks using HTT protocol,” IEEE Trans. Veh. Tech., vol. 69, no. 11, pp. 13932–13936, Nov. 2020.
  141. Y. Zhuang, X. Li, H. Ji, H. Zhang, and V. C. M. Leung, “Optimal resource allocation for RF-powered underlay cognitive radio networks with ambient backscatter communication,” IEEE Trans. Veh. Tech., vol. 69, no. 12, pp. 15216–15228, Dec. 2020.
  142. N. Deepan and B. Rebekka, “Backscatter-assisted wireless powered communication networks with multiple antennas,” in Proc. WiSPNET, 2020, pp. 135–138.
  143. R. Long, G. Yang, Y. Pei, and R. Zhang, “Transmit beamforming for cooperative ambient backscatter communication systems,” in Proc. GLOBECOM, 2017, pp. 1–6.
  144. W. Zang, F. Sun, Y. Cai and, Y. Li, “Transmit beamforming for ambient backscatter communication enabled wireless body area network in multiuser MISO system,” IEEE Trans. Cognitive Commun. Netw., vol. 8, no. 4, pp. 1839–1847, Dec. 2022.
  145. C. He and Z. J. Wang, “Closed-form BER analysis of non-coherent FSK in MISO double Rayleigh fading/RFID channel,” IEEE Commun. Lett., vol. 15, no. 8, pp. 848–850, Aug. 2011.
  146. J. D. Griffin and G. D. Durgin, “Multipath fading measurements at 5.8 GHz for backscatter tags with multiple antennas,” IEEE Trans. Antennas Propag., vol. 58, no. 11, pp. 3693–3700, Nov. 2010.
  147. C.-H. Kang, W.-S. Lee, Y.-H. You, and H.-K. Song, “Signal detection scheme in ambient backscatter system with multiple antennas,” IEEE Access, vol. 5, pp. 14543–14547, 2017.
  148. J. Liu, J. Yu, D. Niyato, R. Zhang, X. Gao, and J. An, “Covert ambient backscatter communications with multi-antenna tag,” IEEE Trans. Wireless Commun.,vol. 22, no. 9, pp. 6199–6212, Sept. 2023.
  149. J. Zhao, W. Gong, and J. Liu, “Spatial stream backscatter using commodity WiFi,” in Proc. of ACM MobiSys, 2018, pp. 191-203.
  150. D. Li and Y. -C. Liang, “Adaptive ambient backscatter communication systems with MRC,” IEEE Trans. Veh. Tech., vol. 67, no. 12, pp. 12352–12357, Dec. 2018.
  151. D. Lin, K. Cumanan, and Z. Ding, “Beamforming design for BackCom assisted NOMA systems,” IEEE Wireless Commun. Lett., vol. 12, no. 9, pp. 1494–1498, Sept. 2023.
  152. C. He, S. Chen, H. Luan, X. Chen, and Z. J. Wang, “Monostatic MIMO backscatter communications,” IEEE J. Selected Areas Commun., vol. 38, no. 8, pp. 1896–1909, Aug. 2020.
  153. H. Luan, X. Xie, L. Han, C. He, and Z. J. Wang, “A better than alamouti OSTBC for MIMO backscatter communications,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1117–1131, Feb. 2022.
  154. X. Wang, H. Yiğitler, and R. Jäntti, “Gaining from multiple ambient sources: signaling matrix for multi-antenna backscatter devices,” IEEE Wireless Commun. Lett., vol. 12, no. 3, pp. 491–495, Mar. 2023.
  155. U. S. Toro, S. Khan, U. Aslam, B. M. ElHalawany, and K. Wu, “Enhancing the sustainability of acoustic backscatter communication with multi-source energy harvesting,” IEEE Commun. Mag., vol. 61, no. 10, pp. 116–120, Oct. 2023.
  156. A. Khaleghi, A. Hasanvand, and I. Balasingham, “Wireless backscatter communication using multiple transmitter scheme,” in Proc. IEEE EuCAP, 2016, pp. 1–4.
  157. C. Yang, J. Gummeson, and A. Sample, “Riding the airways: Ultra-wideband ambient backscatter via commercial broadcast systems,” in Proc. IEEE INFOCOM, 2017, pp. 1–9.
  158. A. Galisteo, A. Varshney, and D. Giustiniano, “Two to tango: Hybrid light and backscatter networks for next billion devices,” in Proc. 18th International Conference on Mobile Systems, Applications, and Services, Jun. 2020. pp. 80–93.
  159. S. H. Kim and D. I. Kim, “Hybrid backscatter communication for wireless-powered heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 16, no. 10, pp. 6557–6570, 2017.
  160. S. H. Kim, S. Y. Park, K. W. Choi, T. -J. Lee, and D. I. Kim, “Backscatter-aided cooperative transmission in wireless-powered heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7309–7323, Nov. 2020.
  161. M. Katanbaf, A. Saffari, and J. R. Smith, “MultiScatter: Multistatic backscatter networking for battery-free sensors,” in Proc. ACM Conf. Embedded Netw. Sens. Syst., 2021, pp. 69–83.
  162. L. Yuan, Q. Wang, J. Zhao, and W. Gong, “Multiprotocol backscatter with commodity radios for personal IoT sensors,” IEEE/ACM Trans. Netw., vol. 31, no. 3, pp. 1132–1144, Jun. 2023.
  163. R. Zhang, X. Kang, and Y. -C. Liang, “Minimum throughput maximization for peer-assisted NOMA-plus-TDMA symbiotic radio networks,” IEEE Wireless Commun. Lett., vol. 10, no. 9, pp. 1847–1851, Sept. 2021.
  164. B. Gu, D. Li, Y. Xu, C. Li, and S. Sun, “Many a little makes a mickle: Probing backscattering energy recycling for backscatter communications,” IEEE Trans. Veh. Tech., vol. 72, no. 1, pp. 1343–1348, Jan. 2023.
  165. J. Hu, X. Cai, and K. Yang, “Joint trajectory and scheduling design for UAV aided secure backscatter communications,” IEEE Wireless Commun. Lett., vol. 9, no. 12, pp. 2168–2172, Dec. 2020.
  166. D. Nagarajan, D. N. K. Jayakody, and R. Balakrishnan, “Performance analysis of UAV-enabled backscatter wireless communication network,” in Proc. DroneCom. 2020, pp. 20–24.
  167. G. Yang, R. Dai, and Y. -C. Liang, “Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 926–941, Feb. 2021.
  168. Y. Zhang, Z. Mou, F. Gao, L. Xing, J. Jiang, and Z. Han, “Hierarchical deep reinforcement learning for backscattering data collection with multiple UAVs,” IEEE Internet Things J., vol. 8, no. 5, pp. 3786–3800, Mar. 2021.
  169. H. Yang, Y. Ye, X. Chu, and S. Sun, “Energy efficiency maximization for UAV-enabled hybrid backscatter-harvest-then-transmit communications,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 2876–2891, May 2022.
  170. Y. Du, Z. Chen, J. Hao, and Y. Guo, “Joint optimization of trajectory and communication in multi-UAV assisted backscatter communication networks,” IEEE Access, vol. 10, pp. 40861–40871, 2022.
  171. L. Bai, Q. Chen, T. Bai, and J. Wang, “UAV-enabled secure multiuser backscatter communications with planar array,” IEEE J. Selected Areas Commun., vol. 40, no. 10, pp. 2946–2961, Oct. 2022.
  172. B. Lyu, Z. Yang, H. Guo, F. Tian, and G. Gui, “Relay cooperation enhanced backscatter communication for Internet-of-Things,” IEEE Internet Things J., vol. 6, no. 2, pp. 2860–2871, Apr. 2019.
  173. A. E. Mostafa and V. W. S. Wong, “Connection density enhancement of backscatter communication systems with relaying,” in Proc. IEEE GLOBECOM, 2020, pp. 1–6.
  174. W. -J. Wang, K. Xu, Y. Yan, and L. Chen, “Relay selection-based cooperative backscatter transmission with energy harvesting: Throughput maximization,” IEEE Wireless Commun. Lett., vol. 11, no. 7, pp. 1533–1537, Jul. 2022.
  175. S. Gong, X. Huang, J. Xu, W. Liu, P. Wang, and D. Niyato, “Backscatter relay communications powered by wireless energy beamforming,” IEEE Trans. Commun., vol. 66, no. 7, pp. 3187–3200, July 2018.
  176. S. Gong, L. Gao, J. Xu, Y. Guo, D. T. Hoang, and D. Niyato, “Exploiting backscatter-aided relay communications with hybrid access model in device-to-device networks,” IEEE Trans. Cognitive Commun. Netw., vol. 5, no. 4, pp. 835–848, Dec. 2019.
  177. J. Xu, J. Li, S. Gong, K. Zhu, and D. Niyato, “Passive relaying game for wireless powered Internet of Things in backscatter-aided hybrid radio networks,” IEEE Internet Things J., vol. 6, no. 5, pp. 8933–8944, Oct. 2019.
  178. X. Gao, D. Niyato, K. Yang, and J. An, “Cooperative scheme for backscatter-aided passive relay communications in wireless-powered D2D networks,” IEEE Internet Things J., vol. 9, no. 1, pp. 152–164, 1 Jan.1, 2022.
  179. C. Zheng, W. Cheng, and H. Zhang, “Optimal resource allocation for two-user and single-DF-relay network with ambient backscatter,” IEEE Access, vol. 7, pp. 91375–91389, 2019.
  180. Y. He, X. Wu, Z. He, and M. Guizani, “Energy efficiency maximization of backscatter-assisted wireless-powered MEC with user cooperation,” IEEE Trans. Mobile Comp., eraly access. 2023. doi: 10.1109/TMC.2023.3243161.
  181. D. Li, “Backscatter communication via harvest-then-transmit relaying,” IEEE Trans. Veh. Tech., vol. 69, no. 6, pp. 6843–6847, Jun. 2020.
  182. B. Lyu, D. T. Hoang, and Z. Yang, “Backscatter then forward: A relaying scheme for batteryless IoT networks,” IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 562–566, Apr. 2020.
  183. Y. Zhuang, X. Li, H. Ji, and H. Zhang, “Exploiting hybrid SWIPT in ambient backscatter communication-enabled relay networks: Optimize power allocation and time scheduling,” IEEE Internet Things J., vol. 9, no. 24, pp. 24655–24668, Dec. 2022.
  184. J. Zhao, W. Gong, and J. Liu, “X-Tandem: Towards MultiHop Backscatter Communication with Commodity WiFi,” in Proc. 24th Annual ACM Int’l. Conf. Mobile Computing and Networking, 2018, pp. 497–511.
  185. A. Y. Majid, M. Jansen, G. O. Delgado, K. S. Yildirim, and P. Pawełłzak, “Multi-hop backscatter tag-to-tag networks,” in Proc. IEEE INFOCOM, 2019, pp. 721–729.
  186. J. Zhao, W. Gong, and J. Liu, “Towards scalable backscatter sensor mesh with decodable relay and distributed excitation,” in Proc. 24th Annual International Conference on Mobile Computing and Networking, 2018, pp. 77–79.
  187. D. Piumwardane, C. Rohner, and T. Voigt, “Reliable flooding in dense backscatter-based tag-to-tag networks,” in Proc. IEEE RFID, 2021, pp. 1–8.
  188. M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. Leung, “Statisticalqos guarantee for IoT network driven by laser-powered UAV relay and RF backscatter communications,” IEEE Trans. Green Commun. Netw., vol. 5, no. 1, pp. 406–425, Mar. 2020.
  189. M. Hua, L. Yang, C. Li, Q. Wu, and A. L. Swindlehurst, “Throughput maximization for UAV-aided backscatter communication networks,” IEEE Trans. Commun., vol. 68, no. 2, pp. 1254–1270, Feb. 2020.
  190. M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. M. Leung, “Statistical-QoS guarantee for IoT network driven by laser-powered UAV relay and RF backscatter communications,” IEEE Trans. Green Commun. Netw., vol. 5, no. 1, pp. 406–425, Mar. 2021.
  191. R. Han, L. Bai, Y. Wen, J. Liu, J. Choi, and W. Zhang, “UAV-aided backscatter communications: Performance analysis and trajectory optimization,” IEEE J. Selected Areas Commun., vol. 39, no. 10, pp. 3129–3143, Oct. 2021.
  192. D. Li, “Bound analysis of number configuration for reflecting elements in IRS-assisted D2D communications,” IEEE Wireless Commun. Lett., vol. 11, no. 10, pp. 2220–2224, Oct. 2022.
  193. D. Li, “How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surface-assisted communication,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1320–1331, Feb. 2022.
  194. Y. Xu, B. Gu, Z. Gao, D. Li, Q. Wu,A and C. Yuen, “Applying RIS in multi-user SWIPT-WPCN systems: A robust and environmentally-friendly design,” IEEE Trans. Cogn. Commun. Netw., early access. Oct. 2023. doi: 10.1109/TCCN.2023.3324636.
  195. D. Li, “Fairness-aware multiuser scheduling for finite-resolution intelligent reflecting surface-assisted communication,” IEEE Commun. Lett., vol. 25, no. 7, pp. 2395–2397, Jul. 2021.
  196. H. Xie, B. Gu, D. Li, Z. Lin, and Y. Xu, “Gain without pain: Recycling reflected energy from wireless powered RIS-aided communications,” IEEE Internet Things J., vol. 10, no. 15, pp. 13264–13280, Aug. 2023.
  197. Y. -C. Liang, Q. Zhang, J. Wang, R. Long, H. Zhou, and G. Yang, “Backscatter communication assisted by reconfigurable intelligent surfaces,” Proceedings of the IEEE, vol. 110, no. 9, pp. 1339–1357, Sept. 2022.
  198. S. Y. Park and D. In Kim, “Intelligent reflecting surface-aided phase-shift backscatter communication,” IEEE IMCOM, 2020, pp. 1–5.
  199. S. Li, L. Bariah, S. Muhaidat, A. Wang, and J. Liang, “Outage analysis of NOMA-enabled backscatter communications with intelligent reflecting surfaces,” IEEE Internet Things J., vol. 9, no. 16, pp. 15390–15400, Aug. 2022.
  200. S. Xu, J. Liu, N. Kato, and Y. Du, “Intelligent reflecting surface backscatter enabled multi-tier computing for 6G Internet of Things,” IEEE J. Selected Areas Commun., vol. 41, no. 2, pp. 320–333, Feb. 2023.
  201. H. Yang, H. Ding, K. Cao, M. Elkashlan, H. Li, and K. Xin, “A RIS-segmented symbiotic ambient backscatter communication system,” IEEE Trans. Veh. Tech., early access. 2023. doi: 10.1109/TVT.2023.3306037.
  202. J. Zuo, Y. Liu, L. Yang, L. Song, and Y. -C. Liang, “Reconfigurable intelligent surface enhanced NOMA assisted backscatter communication system,” IEEE Trans. Veh. Tech., vol. 70, no. 7, pp. 7261–7266, Jul. 2021.
  203. S. Mao, N. Zhang, J. Hu, and K. Yang, “Intelligent reflecting surface-assisted over-the-air computation for backscatter sensor networks,” IEEE Trans. Veh. Tech., vol. 72, no. 5, pp. 6839–6843, May 2023.
  204. X. Jia, X. Zhou, D. Niyato, and J. Zhao, “Intelligent reflecting surface-assisted bistatic backscatter networks: Joint beamforming and reflection design,” IEEE Trans, Green Commun. Netw., vol. 6, no. 2, pp. 799–814, Jun. 2022.
  205. D. L. Galappaththige, F. Rezaei, C. Tellambura, and S. Herath, “RIS-empowered ambient backscatter communication systems,” IEEE Wireless Commun. Lett., vol. 12, no. 1, pp. 173–177, Jan. 2023.
  206. Q. Liu, M. Fu, W. Li, J. Xie, and M. Kadoch, “RIS-assisted ambient backscatter communication for SAGIN IoT,” IEEE Internet Things J., vol. 10, no. 11, pp. 9375–9384, Jun. 2023.
  207. Z. Yang, L. Feng, F. Zhou, X. Qiu, and W. Li, “Analytical performance analysis of intelligent reflecting surface aided ambient backscatter communication network,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2732–2736, Dec. 2021.
  208. Y. Chen, “Performance of ambient backscatter systems using reconfigurable intelligent surface,” IEEE Commun. Lett., vol. 25, no. 8, pp. 2536–2539, Aug. 2021.
  209. A. Bhowal, S. Aïssa, and R. S. Kshetrimayum, “RIS-assisted advanced spatial modulation techniques for ambient backscattering communications,” IEEE Trans. Green Commun. Netw., vol. 5, no. 4, pp. 1684–1696, Dec. 2021.
  210. S. Solanki, S. Gautam, S. K. Sharma, and S. Chatzinotas, “Ambient backscatter assisted co-existence in aerial-IRS wireless networks,” IEEE Open J. Commun. Society, vol. 3, pp. 608–621, 2022.
  211. H. Yang, H. Ding, and M. Elkashlan, “Opportunistic symbiotic backscatter communication systems,” IEEE Commun. Lett., vol. 27, no. 1, pp. 100–104, Jan. 2023.
  212. T. Oyedare, V. K. Shah, D. J. Jakubisin, and J. H. Reed, “Interference suppression using deep learning: Current approaches and open challenges,” IEEE Access, vol. 10, pp. 66238–66266, 2022.
  213. X. Yu and D. Li, “Attention mechanism aided signal detection in backscatter communications with insufficient training data,” IEEE Trans. Veh. Tech., early access. Dec. 2023. doi: 10.1109/TVT.2023.3346198.
  214. B. Gu, D. Li, Y. Liu, and Y. Xu, “Exploiting constructive interference for backscatter communication systems,” IEEE Trans. Commun., vol. 71, no. 7, pp. 4344–4359, Jul. 2023.
  215. S. M. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G Systems: Potentials and challenges,” IEEE Commun. Surveys Tut., vol. 19, no. 2, pp. 721–742, 2nd Quart. 2017.
  216. F. D. Ardakani, R. Huang, and V. W. S. Wong, “Joint device pairing, reflection coefficients, and power control for NOMA backscatter systems,” IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 4396–4411, Apr. 2022.
  217. R. Jantti, R. Duan, J. Lietzen, H. Khalifa, and L. Hanzo, “Quantum-enhanced microwave backscattering communications,” IEEE Commun. Mag., vol. 58, no. 1, pp. 80–85, Jan. 2020.
  218. C. Wang and A. Rahman, “Quantum-enabled 6G wireless networks: Opportunities and challenges,” IEEE Wireless Commun., vol. 29, no. 1, pp. 58–69, Feb. 2022.
  219. U. S. Toro, B. M. ElHalawany, A. B. Wong, L. Wang, and K. Wu, “Machine-learning-assisted signal detection in ambient backscatter communication networks,” IEEE Netw., vol. 35, no. 6, pp. 120–125, Nov. 2021.
  220. A. A. Monrat, O. Schelén, and K. Andersson, “A survey of blockchain from the perspectives of applications, challenges, and opportunities,” IEEE Access, vol. 7, pp. 117134–117151, 2019.
  221. C. Pérez-Penichet, F. Hermans, and T. Voigt, “On limits of constructive interference in backscatter systems,” in Proc. GIoTS, pp. 1-5, Aug. 2017.
  222. G. Zheng, M. Wen, Y. Chen, S. Zhao, and H. Du, “Interference exploitation for ambient backscatter communication networks via symbol level precoding,” IEEE Wireless Commun. Lett., vol. 11, no. 6, pp. 1166–1170, Jun. 2022.
  223. A. Varshney, A. Soleiman, and T. Voigt, “TunnelScatter: Low power communication for sensor tags using tunnel diodes,” in Proc. MobiCom. 2019, pp. 1–17.
  224. L. Zhu, W. Ma, and R. Zhang, “Movable antennas for wireless communication: Opportunities and challenges,“ arXiv prepint arXiv:2306.02331, 2023.
  225. H. Lu, M. Mazaheri, R. Rezvani, and O. Abari, “A millimeter wave backscatter network for Two-Way communication and localization,” in Proc. ACM SIGCOMM’23, Sept. 2023, pp. 49-61.
Citations (8)

Summary

We haven't generated a summary for this paper yet.