Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review (2308.15736v3)

Published 30 Aug 2023 in cs.CR, cs.SY, and eess.SY

Abstract: Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid. However, the trustworthiness of ML is a severe issue that must be addressed to accommodate the trend of ML-based smart grid applications (MLsgAPPs). The adversarial distortion injected into the power signal will greatly affect the system's normal control and operation. Therefore, it is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems. In this paper, we provide a comprehensive review of the recent progress in designing attack and defense methods for MLsgAPPs. Unlike the traditional survey about ML security, this is the first review work about the security of MLsgAPPs that focuses on the characteristics of power systems. We first highlight the specifics for constructing the adversarial attacks on MLsgAPPs. Then, the vulnerability of MLsgAPP is analyzed from both the aspects of the power system and ML model. Afterward, a comprehensive survey is conducted to review and compare existing studies about the adversarial attacks on MLsgAPPs in scenarios of generation, transmission, distribution, and consumption, and the countermeasures are reviewed according to the attacks that they defend against. Finally, the future research directions are discussed on the attacker's and defender's side, respectively. We also analyze the potential vulnerability of LLM-based (e.g., ChatGPT) power system applications. Overall, we encourage more researchers to contribute to investigating the adversarial issues of MLsgAPPs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (193)
  1. J. Li, C. Gu, Y. Xiang, and F. Li, “Edge-cloud computing systems for smart grid: State-of-the-art, architecture, and applications,” Journal of Modern Power Systems and Clean Energy, vol. 10, no. 4, pp. 805–817, 2022.
  2. I. Konstantelos, G. Jamgotchian, S. H. Tindemans, P. Duchesne, S. Cole, C. Merckx, G. Strbac, and P. Panciatici, “Implementation of a massively parallel dynamic security assessment platform for large-scale grids,” IEEE Transactions on Smart Grid, vol. 8, no. 3, pp. 1417–1426, 2016.
  3. I. Niet, R. van Est, and F. Veraart, “Governing ai in electricity systems: Reflections on the eu artificial intelligence bill,” Frontiers in Artificial Intelligence, vol. 4, p. 690237, 2021.
  4. S. C. for AI Technology, “Artificial intelligence technology strategy,” 2017.
  5. R. Doraiswami and L. Fonseca, “An estimation and evaluation of power system transient security,” IFAC Proceedings Volumes, vol. 12, no. 5, pp. 144–149, 1979.
  6. D. J. Sobajic and Y.-H. Pao, “Artificial neural-net based dynamic security assessment for electric power systems,” IEEE Transactions on Power Systems, vol. 4, no. 1, pp. 220–228, 1989.
  7. Y. Chen, X. Wang, and B. Zhang, “An unsupervised deep learning approach for scenario forecasts,” in 2018 power systems computation conference (PSCC).   IEEE, 2018, pp. 1–7.
  8. T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J. Hyndman, “Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond,” pp. 896–913, 2016.
  9. R. Eskandarpour and A. Khodaei, “Machine learning based power grid outage prediction in response to extreme events,” IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3315–3316, 2016.
  10. Y. Wang, Q. Chen, D. Gan, J. Yang, D. S. Kirschen, and C. Kang, “Deep learning-based socio-demographic information identification from smart meter data,” IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2593–2602, 2018.
  11. C. Lassetter, E. Cotilla-Sanchez, and J. Kim, “Learning schemes for power system planning and control,” in 51st Hawaii International Conference on System Sciences (HICSS),, 2018.
  12. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.
  13. F. R. Gomez, A. D. Rajapakse, U. D. Annakkage, and I. T. Fernando, “Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements,” IEEE Transactions on Power systems, vol. 26, no. 3, pp. 1474–1483, 2010.
  14. W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term residential load forecasting based on lstm recurrent neural network,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841–851, 2017.
  15. L. Wang, Q. Zhou, and S. Jin, “Physics-guided deep learning for power system state estimation,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 4, pp. 607–615, 2020.
  16. P. Rai, N. D. Londhe, and R. Raj, “Fault classification in power system distribution network integrated with distributed generators using cnn,” Electric Power Systems Research, vol. 192, p. 106914, 2021.
  17. D. Zhang, X. Han, and C. Deng, “Review on the research and practice of deep learning and reinforcement learning in smart grids,” CSEE Journal of Power and Energy Systems, vol. 4, no. 3, pp. 362–370, 2018.
  18. M. Vasconcelos, L. M. Carvalho, J. Meirinhos, N. Omont, P. Gambier-Morel, G. Jamgotchian, D. Cirio, E. Ciapessoni, A. Pitto, I. Konstantelos et al., “Online security assessment with load and renewable generation uncertainty: The itesla project approach,” in 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS).   IEEE, 2016, pp. 1–8.
  19. C. Liu, K. Sun, Z. H. Rather, Z. Chen, C. L. Bak, P. Thøgersen, and P. Lund, “A systematic approach for dynamic security assessment and the corresponding preventive control scheme based on decision trees,” IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 717–730, 2013.
  20. D. Yoon, S. Hong, B.-J. Lee, and K.-E. Kim, “Winning the l2rpn challenge: Power grid management via semi-markov afterstate actor-critic,” in International Conference on Learning Representations (ICRL), 2020.
  21. N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adversarial classification,” in Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), 2004, pp. 99–108.
  22. Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi, “Adversarial support vector machine learning,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), 2012, pp. 1059–1067.
  23. T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the machine learning model supply chain,” arXiv preprint arXiv:1708.06733, 2017.
  24. M. Kearns and M. Li, “Learning in the presence of malicious errors,” in Proceedings of the twentieth annual ACM Symposium on Theory of Computing (STOC), 1988, pp. 267–280.
  25. D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (KDD), 2005, pp. 641–647.
  26. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.
  27. A. Oseni, N. Moustafa, H. Janicke, P. Liu, Z. Tari, and A. Vasilakos, “Security and privacy for artificial intelligence: Opportunities and challenges,” arXiv preprint arXiv:2102.04661, 2021.
  28. F. O. Olowononi, D. B. Rawat, and C. Liu, “Resilient machine learning for networked cyber physical systems: A survey for machine learning security to securing machine learning for cps,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 524–552, 2020.
  29. G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review of false data injection attacks against modern power systems,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1630–1638, 2016.
  30. N. A. E. R. Corporation, “Nerc critical infrastructure protection (cip) reliability standards.”
  31. A. Dabrowski, J. Ullrich, and E. R. Weippl, “Grid shock: Coordinated load-changing attacks on power grids: The non-smart power grid is vulnerable to cyber attacks as well,” in Proceedings of the 33rd Annual Computer Security Applications Conference (ACSAC), 2017, pp. 303–314.
  32. D. U. Case, “Analysis of the cyber attack on the ukrainian power grid,” Electricity Information Sharing and Analysis Center (E-ISAC), vol. 388, no. 1-29, p. 3, 2016.
  33. R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security & Privacy, vol. 9, no. 3, pp. 49–51, 2011.
  34. Y. Chen, Y. Tan, and D. Deka, “Is machine learning in power systems vulnerable?” in 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm).   IEEE, 2018, pp. 1–6.
  35. J. Hao and Y. Tao, “Adversarial attacks on deep learning models in smart grids,” Energy Reports, vol. 8, pp. 123–129, 2022.
  36. N. Martins, J. M. Cruz, T. Cruz, and P. H. Abreu, “Adversarial machine learning applied to intrusion and malware scenarios: a systematic review,” IEEE Access, vol. 8, pp. 35 403–35 419, 2020.
  37. J. Liu, M. Nogueira, J. Fernandes, and B. Kantarci, “Adversarial machine learning: A multilayer review of the state-of-the-art and challenges for wireless and mobile systems,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 123–159, 2021.
  38. Y. Zhou, M. Kantarcioglu, and B. Xi, “A survey of game theoretic approach for adversarial machine learning,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 3, p. e1259, 2019.
  39. I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Adversarial machine learning attacks and defense methods in the cyber security domain,” ACM Computing Surveys, vol. 54, no. 5, pp. 1–36, 2021.
  40. D. Adesina, C.-C. Hsieh, Y. E. Sagduyu, and L. Qian, “Adversarial machine learning in wireless communications using rf data: A review,” IEEE Communications Surveys & Tutorials, 2022.
  41. G. R. Machado, E. Silva, and R. R. Goldschmidt, “Adversarial machine learning in image classification: A survey toward the defender’s perspective,” ACM Computing Surveys, vol. 55, no. 1, pp. 1–38, 2021.
  42. H. Xu, Y. Ma, H.-C. Liu, D. Deb, H. Liu, J.-L. Tang, and A. K. Jain, “Adversarial attacks and defenses in images, graphs and text: A review,” International Journal of Automation and Computing, vol. 17, pp. 151–178, 2020.
  43. S. Hu, X. Shang, Z. Qin, M. Li, Q. Wang, and C. Wang, “Adversarial examples for automatic speech recognition: Attacks and countermeasures,” IEEE Communications Magazine, vol. 57, no. 10, pp. 120–126, 2019.
  44. A. Qayyum, M. Usama, J. Qadir, and A. Al-Fuqaha, “Securing connected & autonomous vehicles: Challenges posed by adversarial machine learning and the way forward,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 998–1026, 2020.
  45. W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li, “Adversarial attacks on deep-learning models in natural language processing: A survey,” ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 3, pp. 1–41, 2020.
  46. W. Jiang, Z. He, J. Zhan, W. Pan, and D. Adhikari, “Research progress and challenges on application-driven adversarial examples: A survey,” ACM Transactions on Cyber-Physical Systems, vol. 5, no. 4, pp. 1–25, 2021.
  47. S. Qiu, Q. Liu, S. Zhou, and C. Wu, “Review of artificial intelligence adversarial attack and defense technologies,” Applied Sciences, vol. 9, no. 5, p. 909, 2019.
  48. Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, and V. C. Leung, “A survey on security threats and defensive techniques of machine learning: A data driven view,” IEEE access, vol. 6, pp. 12 103–12 117, 2018.
  49. R. R. Wiyatno, A. Xu, O. Dia, and A. De Berker, “Adversarial examples in modern machine learning: A review,” arXiv preprint arXiv:1911.05268, 2019.
  50. N. Šrndić and P. Laskov, “Practical evasion of a learning-based classifier: A case study,” in 2014 IEEE Symposium on Security and Privacy (SP).   IEEE, 2014, pp. 197–211.
  51. J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generating adversarial text against real-world applications,” arXiv preprint arXiv:1812.05271, 2018.
  52. K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, “Cybersecurity for autonomous vehicles: Review of attacks and defense,” Computers & Security, vol. 103, p. 102150, 2021.
  53. M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li, “Manipulating machine learning: Poisoning attacks and countermeasures for regression learning,” in 2018 IEEE symposium on security and privacy (SP).   IEEE, 2018, pp. 19–35.
  54. B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli, “Evasion attacks against machine learning at test time,” in European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD).   Springer, 2013, pp. 387–402.
  55. R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against machine learning models,” in 2017 IEEE symposium on security and privacy (SP).   IEEE, 2017, pp. 3–18.
  56. M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High accuracy and high fidelity extraction of neural networks,” in 29th USENIX security symposium (USENIX Security 20), 2020, pp. 1345–1362.
  57. M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence information and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015, pp. 1322–1333.
  58. Q. Xiao, K. Li, D. Zhang, and W. Xu, “Security risks in deep learning implementations,” in 2018 IEEE Security and Privacy Workshops (SPW).   IEEE, 2018, pp. 123–128.
  59. X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses for deep learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 9, pp. 2805–2824, 2019.
  60. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
  61. A. Rozsa, E. M. Rudd, and T. E. Boult, “Adversarial diversity and hard positive generation,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops (CVPR), 2016, pp. 25–32.
  62. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.
  63. S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate method to fool deep neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2016, pp. 2574–2582.
  64. N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The limitations of deep learning in adversarial settings,” in 2016 IEEE European symposium on security and privacy (EuroS&P).   IEEE, 2016, pp. 372–387.
  65. A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,” arXiv preprint arXiv:1611.01236, 2016.
  66. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 IEEE Symposium on Security and Privacy (sp).   Ieee, 2017, pp. 39–57.
  67. M. Wu, M. Wicker, W. Ruan, X. Huang, and M. Kwiatkowska, “A game-based approximate verification of deep neural networks with provable guarantees,” Theoretical Computer Science, vol. 807, pp. 298–329, 2020.
  68. Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation in electric power grids,” ACM Transactions on Information and System Security, vol. 14, no. 1, pp. 1–33, 2011.
  69. J. Li, Y. Yang, J. S. Sun, K. Tomsovic, and H. Qi, “Conaml: Constrained adversarial machine learning for cyber-physical systems,” in Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security (CCS), 2021, pp. 52–66.
  70. A. Venzke and S. Chatzivasileiadis, “Verification of neural network behaviour: Formal guarantees for power system applications,” IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 383–397, 2020.
  71. T. Liu and T. Shu, “Adversarial false data injection attack against nonlinear ac state estimation with ann in smart grid,” in 15th EAI International Conference on Security and Privacy in Communication Networks (SecureComm).   Springer, 2019, pp. 365–379.
  72. X. Wan, L. Zeng, and M. Sun, “Exploring the vulnerability of deep reinforcement learning-based emergency control for low carbon power systems,” in The 31th International Joint Conference on Artificial Intelligence (IJCAI). IEEE, Piscataway, 2022.
  73. L. Zeng, M. Sun, X. Wan, Z. Zhang, R. Deng, and Y. Xu, “Physics-constrained vulnerability assessment of deep reinforcement learning-based scopf,” IEEE Transactions on Power Systems, 2022.
  74. Z. Zhang, M. Sun, R. Deng, C. Kang, and M.-Y. Chow, “Physics-constrained robustness evaluation of intelligent security assessment for power systems,” IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 872–884, 2022.
  75. Z. Liu, Q. Wang, Y. Ye, and Y. Tang, “A gan-based data injection attack method on data-driven strategies in power systems,” IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 3203–3213, 2022.
  76. J. Li, Y. Yang, J. S. Sun, K. Tomsovic, and H. Qi, “Towards adversarial-resilient deep neural networks for false data injection attack detection in power grids,” arXiv preprint arXiv:2102.09057, 2021.
  77. J. Wang and P. Srikantha, “Stealthy black-box attacks on deep learning non-intrusive load monitoring models,” IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3479–3492, 2021.
  78. S. Karagiannopoulos, P. Aristidou, and G. Hug, “Data-driven local control design for active distribution grids using off-line optimal power flow and machine learning techniques,” IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6461–6471, 2019.
  79. V. J. Gutierrez-Martinez, C. A. Cañizares, C. R. Fuerte-Esquivel, A. Pizano-Martinez, and X. Gu, “Neural-network security-boundary constrained optimal power flow,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 63–72, 2010.
  80. B. Donnot, I. Guyon, M. Schoenauer, P. Panciatici, and A. Marot, “Introducing machine learning for power system operation support,” arXiv preprint arXiv:1709.09527, 2017.
  81. B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, “Fast power system security analysis with guided dropout,” arXiv preprint arXiv:1801.09870, 2018.
  82. L. Duchesne, E. Karangelos, and L. Wehenkel, “Recent developments in machine learning for energy systems reliability management,” Proceedings of the IEEE, vol. 108, no. 9, pp. 1656–1676, 2020.
  83. M. Glavic, “(deep) reinforcement learning for electric power system control and related problems: A short review and perspectives,” Annual Reviews in Control, vol. 48, pp. 22–35, 2019.
  84. K. E. Martin, G. Benmouyal, M. Adamiak, M. Begovic, R. Burnett, K. Carr, A. Cobb, J. Kusters, S. Horowitz, G. Jensen et al., “Ieee standard for synchrophasors for power systems,” IEEE Transactions on Power Delivery, vol. 13, no. 1, pp. 73–77, 1998.
  85. A. S. Musleh, G. Chen, and Z. Y. Dong, “A survey on the detection algorithms for false data injection attacks in smart grids,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2218–2234, 2019.
  86. S. Ghosh and S. Sampalli, “A survey of security in scada networks: Current issues and future challenges,” IEEE Access, vol. 7, pp. 135 812–135 831, 2019.
  87. F. Zhang, H. A. D. E. Kodituwakku, J. W. Hines, and J. Coble, “Multilayer data-driven cyber-attack detection system for industrial control systems based on network, system, and process data,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4362–4369, 2019.
  88. T. Sasaki, A. Fujita, C. H. Ganán, M. van Eeten, K. Yoshioka, and T. Matsumoto, “Exposed infrastructures: Discovery, attacks and remediation of insecure ics remote management devices,” in 2022 IEEE Symposium on Security and Privacy (SP).   IEEE, 2022, pp. 2379–2396.
  89. M. Nawrocki, T. C. Schmidt, and M. Wählisch, “Uncovering vulnerable industrial control systems from the internet core,” in 2020-2020 IEEE/IFIP Network Operations and Management Symposium (NOMS).   IEEE, 2020, pp. 1–9.
  90. T. I. Staff, “Major power outage in india could be triggered by cyber attack,” 2020.
  91. A. Lee et al., “Electric sector failure scenarios and impact analyses,” National electric sector cybersecurity organization resource (NESCOR) technical working group, vol. 1, 2013.
  92. Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on cyber security for smart grid communications,” IEEE communications surveys & tutorials, vol. 14, no. 4, pp. 998–1010, 2012.
  93. Q. Yang, J. Yang, W. Yu, D. An, N. Zhang, and W. Zhao, “On false data-injection attacks against power system state estimation: Modeling and countermeasures,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 3, pp. 717–729, 2013.
  94. R. Deng and H. Liang, “False data injection attacks with limited susceptance information and new countermeasures in smart grid,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1619–1628, 2018.
  95. Y. Huang, M. Esmalifalak, H. Nguyen, R. Zheng, Z. Han, H. Li, and L. Song, “Bad data injection in smart grid: attack and defense mechanisms,” IEEE Communications Magazine, vol. 51, no. 1, pp. 27–33, 2013.
  96. L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, “Detecting and preventing cyber insider threats: A survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1397–1417, 2018.
  97. W. Wang and Z. Lu, “Cyber security in the smart grid: Survey and challenges,” Computer networks, vol. 57, no. 5, pp. 1344–1371, 2013.
  98. J. Tian, B. Wang, J. Li, and C. Konstantinou, “Adversarial attack and defense methods for neural network based state estimation in smart grid,” IET Renewable Power Generation, vol. 16, no. 16, pp. 3507–3518, 2022.
  99. M. Kamal, A. Shahsavari, and H. Mohsenian-Rad, “Poisoning attack against event classification in distribution synchrophasor measurements,” in 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm).   IEEE, 2021, pp. 327–332.
  100. R. Paulavičius and J. Žilinskas, “Analysis of different norms and corresponding lipschitz constants for global optimization,” Technological and Economic Development of Economy, vol. 12, no. 4, pp. 301–306, 2006.
  101. C. Ren and Y. Xu, “Robustness verification for machine-learning-based power system dynamic security assessment models under adversarial examples,” IEEE Transactions on Control of Network Systems, vol. 9, no. 4, pp. 1645–1654, 2022.
  102. C. Ren, X. Du, Y. Xu, Q. Song, Y. Liu, and R. Tan, “Vulnerability analysis, robustness verification, and mitigation strategy for machine learning-based power system stability assessment model under adversarial examples,” IEEE Transactions on Smart Grid, vol. 13, no. 2, pp. 1622–1632, 2021.
  103. Z. Zhang and D. K. Yau, “Core: Constrained robustness evaluation of machine learning-based stability assessment for power systems,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 2, pp. 557–559, 2023.
  104. Y. Chen, M. Sun, Z. Chu, S. Camal, G. Kariniotakis, and F. Teng, “Vulnerability and impact of machine learning-based inertia forecasting under cost-oriented data integrity attack,” IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 2275–2287, 2022.
  105. A. Sayghe, J. Zhao, and C. Konstantinou, “Evasion attacks with adversarial deep learning against power system state estimation,” in 2020 IEEE Power & Energy Society General Meeting (PESGM).   IEEE, 2020, pp. 1–5.
  106. J. Tian, B. Wang, Z. Wang, K. Cao, J. Li, and M. Ozay, “Joint adversarial example and false data injection attacks for state estimation in power systems,” IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 13 699–13 713, 2021.
  107. J. Tian, B. Wang, J. Li, Z. Wang, B. Ma, and M. Ozay, “Exploring targeted and stealthy false data injection attacks via adversarial machine learning,” IEEE Internet of Things Journal, vol. 9, no. 15, pp. 14 116–14 125, 2022.
  108. I. Niazazari and H. Livani, “Attack on grid event cause analysis: An adversarial machine learning approach,” in 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT).   IEEE, 2020, pp. 1–5.
  109. J. Li, Y. Yang, and J. S. Sun, “Exploiting vulnerabilities of deep learning-based energy theft detection in ami through adversarial attacks,” arXiv preprint arXiv:2010.09212, 2020.
  110. J. Li, Y. Yang, and J. Sun, “Searchfromfree: Adversarial measurements for machine learning-based energy theft detection,” in 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm).   IEEE, 2020, pp. 1–6.
  111. Z. Guihai and B. Sikdar, “Adversarial machine learning against false data injection attack detection for smart grid demand response,” in 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm).   IEEE, 2021, pp. 352–357.
  112. Y. Zhou, Z. Ding, Q. Wen, and Y. Wang, “Robust load forecasting towards adversarial attacks via bayesian learning,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1445–1459, 2022.
  113. Y. Chen, D. Arnold, Y. Shi, and S. Peisert, “Understanding the safety requirements for learning-based power systems operations,” arXiv preprint arXiv:2110.04983, 2021.
  114. J. Tian, T. Li, F. Shang, K. Cao, J. Li, and M. Ozay, “Adaptive normalized attacks for learning adversarial attacks and defenses in power systems,” in 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm).   IEEE, 2019, pp. 1–6.
  115. J. Tian, B. Wang, J. Li, and Z. Wang, “Adversarial attacks and defense for cnn based power quality recognition in smart grid,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 2, pp. 807–819, 2021.
  116. J. Luo, T. Hong, and S.-C. Fang, “Benchmarking robustness of load forecasting models under data integrity attacks,” International Journal of Forecasting, vol. 34, no. 1, pp. 89–104, 2018.
  117. Y. Chen, Y. Tan, and B. Zhang, “Exploiting vulnerabilities of load forecasting through adversarial attacks,” in Proceedings of the tenth ACM international conference on future energy systems (FES), 2019, pp. 1–11.
  118. Y. Zheng, Z. Yan, K. Chen, J. Sun, Y. Xu, and Y. Liu, “Vulnerability assessment of deep reinforcement learning models for power system topology optimization,” IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3613–3623, 2021.
  119. L. Zeng, D. Qiu, and M. Sun, “Resilience enhancement of multi-agent reinforcement learning-based demand response against adversarial attacks,” Applied Energy, vol. 324, p. 119688, 2022.
  120. J. Ruan, Q. Wang, S. Chen, H. Lyu, G. Liang, J. Zhao, and Z. Y. Dong, “On vulnerability of renewable energy forecasting: Adversarial learning attacks,” IEEE Transactions on Industrial Informatics, 2023.
  121. L. Yang, G. Liang, Y. Yang, J. Ruan, P. Yu, and C. Yang, “Adversarial false data injection attacks on deep learning-based short-term wind speed forecasting,” IET Renewable Power Generation, 2023.
  122. A. Takiddin, M. Ismail, U. Zafar, and E. Serpedin, “Robust electricity theft detection against data poisoning attacks in smart grids,” IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 2675–2684, 2020.
  123. M. A. Hossain, R. K. Chakrabortty, S. Elsawah, E. M. Gray, and M. J. Ryan, “Predicting wind power generation using hybrid deep learning with optimization,” IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1–5, 2021.
  124. Y. Li, R. Wang, Y. Li, M. Zhang, and C. Long, “Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach,” Applied Energy, vol. 329, p. 120291, 2023.
  125. K. Mahmud, S. Azam, A. Karim, S. Zobaed, B. Shanmugam, and D. Mathur, “Machine learning based pv power generation forecasting in alice springs,” IEEE Access, vol. 9, pp. 46 117–46 128, 2021.
  126. S.-G. Kim, J.-Y. Jung, and M. K. Sim, “A two-step approach to solar power generation prediction based on weather data using machine learning,” Sustainability, vol. 11, no. 5, p. 1501, 2019.
  127. M. Djukanovic, M. Novicevic, D. Dobrijevic, B. Babic, D. J. Sobajic, and Y.-H. Pao, “Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants,” IEEE transactions on Energy Conversion, vol. 10, no. 4, pp. 760–767, 1995.
  128. Y. Liang, D. He, and D. Chen, “Poisoning attack on load forecasting,” in 2019 IEEE innovative smart grid technologies-Asia (ISGT Asia).   IEEE, 2019, pp. 1230–1235.
  129. T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel, “Evaluating the robustness of neural networks: An extreme value theory approach,” arXiv preprint arXiv:1801.10578, 2018.
  130. Y. He, G. J. Mendis, and J. Wei, “Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2505–2516, 2017.
  131. A. G. Illera and J. V. Vidal, “Lights off! the darkness of the smart meters,” BlackHat Europe, 2014.
  132. M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward networks with a nonpolynomial activation function can approximate any function,” Neural networks, vol. 6, no. 6, pp. 861–867, 1993.
  133. K. R. Mestav, J. Luengo-Rozas, and L. Tong, “Bayesian state estimation for unobservable distribution systems via deep learning,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4910–4920, 2019.
  134. R. Wiyatno and A. Xu, “Maximal jacobian-based saliency map attack,” arXiv preprint arXiv:1808.07945, 2018.
  135. O. Samuelsson, M. Hemmingsson, A. H. Nielsen, K. O. H. Pedersen, and J. Rasmussen, “Monitoring of power system events at transmission and distribution level,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 1007–1008, 2006.
  136. R. Yadav, S. Raj, and A. K. Pradhan, “Real-time event classification in power system with renewables using kernel density estimation and deep neural network,” IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6849–6859, 2019.
  137. A. Aligholian, A. Shahsavari, E. M. Stewart, E. Cortez, and H. Mohsenian-Rad, “Unsupervised event detection, clustering, and use case exposition in micro-pmu measurements,” IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3624–3636, 2021.
  138. D. Ernst, M. Glavic, and L. Wehenkel, “Power systems stability control: reinforcement learning framework,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 427–435, 2004.
  139. Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for power system applications: An overview,” CSEE Journal of Power and Energy Systems, vol. 6, no. 1, pp. 213–225, 2019.
  140. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.
  141. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  142. V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in International conference on machine learning (ICML).   PMLR, 2016, pp. 1928–1937.
  143. Y. Zhou, B. Zhang, C. Xu, T. Lan, R. Diao, D. Shi, Z. Wang, and W.-J. Lee, “A data-driven method for fast ac optimal power flow solutions via deep reinforcement learning,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 6, pp. 1128–1139, 2020.
  144. M. Tan, S. Yuan, S. Li, Y. Su, H. Li, and F. He, “Ultra-short-term industrial power demand forecasting using lstm based hybrid ensemble learning,” IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2937–2948, 2019.
  145. Y. Wang, G. Hug, Z. Liu, and N. Zhang, “Modeling load forecast uncertainty using generative adversarial networks,” Electric Power Systems Research, vol. 189, p. 106732, 2020.
  146. J. Xie and T. Hong, “Gefcom2014 probabilistic electric load forecasting: An integrated solution with forecast combination and residual simulation,” International Journal of Forecasting, vol. 32, no. 3, pp. 1012–1016, 2016.
  147. M. Zanetti, E. Jamhour, M. Pellenz, M. Penna, V. Zambenedetti, and I. Chueiri, “A tunable fraud detection system for advanced metering infrastructure using short-lived patterns,” IEEE Transactions on Smart grid, vol. 10, no. 1, pp. 830–840, 2017.
  148. S. Awareness, “Hacking a smart meter and killing the grid,” 2018.
  149. T. Sun, “Electric smart meter hack,” 2020.
  150. N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense to adversarial perturbations against deep neural networks,” in 2016 IEEE symposium on security and privacy (SP).   IEEE, 2016, pp. 582–597.
  151. S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang, “Nic: Detecting adversarial samples with neural network invariant checking,” in 26th Annual Network And Distributed System Security Symposium (NDSS 2019).   Internet Soc, 2019.
  152. D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial examples,” in Proceedings of the 2017 ACM SIGSAC conference on computer and communications security (CCS), 2017, pp. 135–147.
  153. L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial reinforcement learning,” in International Conference on Machine Learning (ICML).   PMLR, 2017, pp. 2817–2826.
  154. H. Zhang, H. Chen, D. Boning, and C.-J. Hsieh, “Robust reinforcement learning on state observations with learned optimal adversary,” arXiv preprint arXiv:2101.08452, 2021.
  155. G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An efficient smt solver for verifying deep neural networks,” in 29th International Conference on Computer Aided Verification (CAV).   Springer, 2017, pp. 97–117.
  156. V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed integer programming,” arXiv preprint arXiv:1711.07356, 2017.
  157. M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy of pruning for model compression,” arXiv preprint arXiv:1710.01878, 2017.
  158. H. Xu, T. Zhu, L. Zhang, W. Zhou, and P. S. Yu, “Machine unlearning: A survey,” ACM Computing Surveys, vol. 56, no. 1, pp. 1–36, 2023.
  159. W. Xu and F. Teng, “Task-aware machine unlearning and its application in load forecasting,” arXiv preprint arXiv:2308.14412, 2023.
  160. M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac, “Smart meter data privacy: A survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2820–2835, 2017.
  161. A. Wood, K. Najarian, and D. Kahrobaei, “Homomorphic encryption for machine learning in medicine and bioinformatics,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–35, 2020.
  162. X. Gong, Q. Wang, Y. Chen, W. Yang, and X. Jiang, “Model extraction attacks and defenses on cloud-based machine learning models,” IEEE Communications Magazine, vol. 58, no. 12, pp. 83–89, 2020.
  163. F. Fioretto, T. W. Mak, and P. Van Hentenryck, “Differential privacy for power grid obfuscation,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1356–1366, 2019.
  164. T. Wu, C. Zhao, and Y.-J. A. Zhang, “Privacy-preserving distributed optimal power flow with partially homomorphic encryption,” IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 4506–4521, 2021.
  165. R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “Eppa: An efficient and privacy-preserving aggregation scheme for secure smart grid communications,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 9, pp. 1621–1631, 2012.
  166. Z. Guan, G. Si, X. Zhang, L. Wu, N. Guizani, X. Du, and Y. Ma, “Privacy-preserving and efficient aggregation based on blockchain for power grid communications in smart communities,” IEEE Communications Magazine, vol. 56, no. 7, pp. 82–88, 2018.
  167. L. Wu, S. Fu, Y. Luo, and M. Xu, “Sectcn: Privacy-preserving short-term residential electrical load forecasting,” IEEE Transactions on Industrial Informatics, 2023.
  168. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.
  169. T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and A. S. Avestimehr, “Federated learning for the internet of things: Applications, challenges, and opportunities,” IEEE Internet of Things Magazine, vol. 5, no. 1, pp. 24–29, 2022.
  170. V. Venkataramanan, S. Kaza, and A. M. Annaswamy, “Der forecast using privacy-preserving federated learning,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2046–2055, 2023.
  171. R. Deng, G. Xiao, and R. Lu, “Defending against false data injection attacks on power system state estimation,” IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp. 198–207, 2015.
  172. M. Liu, C. Zhao, Z. Zhang, R. Deng, P. Cheng, and J. Chen, “Converter-based moving target defense against deception attacks in dc microgrids,” IEEE Transactions on Smart Grid, vol. 13, no. 5, pp. 3984–3996, 2021.
  173. Z. Zhang, R. Deng, D. K. Yau, P. Cheng, and M.-Y. Chow, “Security enhancement of power system state estimation with an effective and low-cost moving target defense,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 5, pp. 3066–3081, 2022.
  174. S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive survey,” ACM computing surveys, vol. 51, no. 6, pp. 1–36, 2019.
  175. D. McNamee and T. Elliott, “Secure historian access in scada systems,” Galios, White Paper, 2011.
  176. Z. Zhang, P. Cheng, J. Wu, and J. Chen, “Secure state estimation using hybrid homomorphic encryption scheme,” IEEE Transactions on Control Systems Technology, vol. 29, no. 4, pp. 1704–1720, 2020.
  177. K. Yang, Z. Zhang, Y. Tian, and J. Ma, “A secure authentication framework to guarantee the traceability of avatars in metaverse,” IEEE Transactions on Information Forensics and Security, 2023.
  178. R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Transactions on power systems, vol. 26, no. 1, pp. 12–19, 2010.
  179. R. Igual, C. Medrano, F. J. Arcega, and G. Mantescu, “Integral mathematical model of power quality disturbances,” in 2018 18th International Conference on Harmonics and Quality of Power (ICHQP).   IEEE, 2018, pp. 1–6.
  180. A. Marot, B. Donnot, C. Romero, B. Donon, M. Lerousseau, L. Veyrin-Forrer, and I. Guyon, “Learning to run a power network challenge for training topology controllers,” Electric Power Systems Research, vol. 189, p. 106635, 2020.
  181. Z. Nagy, J. R. Vázquez-Canteli, S. Dey, and G. Henze, “The citylearn challenge 2021,” in Proceedings of the 8th ACM international conference on systems for energy-efficient buildings, cities, and transportation, 2021, pp. 218–219.
  182. R. Henry and D. Ernst, “Gym-anm: Reinforcement learning environments for active network management tasks in electricity distribution systems,” Energy and AI, vol. 5, p. 100092, 2021.
  183. Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and Z. Huang, “Adaptive power system emergency control using deep reinforcement learning,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1171–1182, 2019.
  184. X. Liu, Y. Song, and Z. Li, “Dummy data attacks in power systems,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1792–1795, 2019.
  185. M. Mohammadpourfard, F. Ghanaatpishe, M. Mohammadi, S. Lakshminarayana, and M. Pechenizkiy, “Generation of false data injection attacks using conditional generative adversarial networks,” in 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe).   IEEE, 2020, pp. 41–45.
  186. B. Huang and J. Wang, “Applications of physics-informed neural networks in power systems-a review,” IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 572–588, 2022.
  187. Z. Zhang, R. Deng, D. K. Yau, P. Cheng, and J. Chen, “Analysis of moving target defense against false data injection attacks on power grid,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2320–2335, 2019.
  188. M. S. Sadabadi, N. Mijatovic, J.-F. Trégouët, and T. Dragičević, “Distributed control of parallel dc–dc converters under fdi attacks on actuators,” IEEE Transactions on Industrial Electronics, vol. 69, no. 10, pp. 10 478–10 488, 2022.
  189. R. S. Bonadia, F. C. Trindade, W. Freitas, and B. Venkatesh, “On the potential of chatgpt to generate distribution systems for load flow studies using opendss,” IEEE Transactions on Power Systems, 2023.
  190. R. Li, C. Pu, F. Fan, J. Tao, and Y. Xiang, “A framework for leveraging chatgpt on programming tasks in energy systems.” CoRR, 2023.
  191. J. Shi, Y. Liu, P. Zhou, and L. Sun, “Badgpt: Exploring security vulnerabilities of chatgpt via backdoor attacks to instructgpt,” arXiv preprint arXiv:2304.12298, 2023.
  192. M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From chatgpt to threatgpt: Impact of generative ai in cybersecurity and privacy,” IEEE Access, 2023.
  193. G. Deng, Y. Liu, Y. Li, K. Wang, Y. Zhang, Z. Li, H. Wang, T. Zhang, and Y. Liu, “Jailbreaker: Automated jailbreak across multiple large language model chatbots,” arXiv preprint arXiv:2307.08715, 2023.
Citations (16)

Summary

We haven't generated a summary for this paper yet.