Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Ray Sampling for Radiance Fields Reconstruction (2308.15547v1)

Published 29 Aug 2023 in cs.CV and cs.GR

Abstract: Accelerating neural radiance fields training is of substantial practical value, as the ray sampling strategy profoundly impacts network convergence. More efficient ray sampling can thus directly enhance existing NeRF models' training efficiency. We therefore propose a novel ray sampling approach for neural radiance fields that improves training efficiency while retaining photorealistic rendering results. First, we analyze the relationship between the pixel loss distribution of sampled rays and rendering quality. This reveals redundancy in the original NeRF's uniform ray sampling. Guided by this finding, we develop a sampling method leveraging pixel regions and depth boundaries. Our main idea is to sample fewer rays in training views, yet with each ray more informative for scene fitting. Sampling probability increases in pixel areas exhibiting significant color and depth variation, greatly reducing wasteful rays from other regions without sacrificing precision. Through this method, not only can the convergence of the network be accelerated, but the spatial geometry of a scene can also be perceived more accurately. Rendering outputs are enhanced, especially for texture-complex regions. Experiments demonstrate that our method significantly outperforms state-of-the-art techniques on public benchmark datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Shilei Sun (2 papers)
  2. Ming Liu (421 papers)
  3. Zhongyi Fan (3 papers)
  4. Yuxue Liu (1 paper)
  5. Chengwei Lv (1 paper)
  6. Liquan Dong (3 papers)
  7. Lingqin Kong (1 paper)
Citations (4)

Summary

We haven't generated a summary for this paper yet.