Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Low Degree Testing (2308.15441v1)

Published 29 Aug 2023 in cs.DS, cs.IT, and math.IT

Abstract: In the $t$-online-erasure model in property testing, an adversary is allowed to erase $t$ values of a queried function for each query the tester makes. This model was recently formulated by Kalemaj, Raskhodnikova andVarma, who showed that the properties of linearity of functions as well as quadraticity can be tested in$O_t(1)$ many queries: $O(\log (t))$ for linearity and $2{2{O(t)}}$ for quadraticity. They asked whether the more general property of low-degreeness can be tested in the online erasure model, whether better testers exist for quadraticity, and if similar results hold when erasures'' are replaced withcorruptions''. We show that, in the $t$-online-erasure model, for a prime power $q$, given query access to a function $f: \mathbb{F}_qn \xrightarrow[]{} \mathbb{F}_q$, one can distinguish in $\mathrm{poly}(\log{d+q}(t)/\delta)$ queries between the case that $f$ is degree at most $d$, and the case that $f$ is $\delta$-far from any degree $d$ function (with respect to the fractional hamming distance). This answers the aforementioned questions and brings the query complexity to nearly match the query complexity of low-degree testing in the classical property testing model. Our results are based on the observation that the property of low-degreeness admits a large and versatile family of query efficient testers. Our testers operates by querying a uniformly random, sufficiently large set of points in a large enough affine subspace, and finding a tester for low-degreeness that only utilizes queries from that set of points. We believe that this tester may find other applications to algorithms in the online-erasure model or other related models, and may be of independent interest.

Citations (3)

Summary

We haven't generated a summary for this paper yet.