Moments of the number of points in a bounded set for number field lattices (2308.15275v2)
Abstract: We examine the moments of the number of lattice points in a fixed ball of volume $V$ for lattices in Euclidean space which are modules over the ring of integers of a number field $K$. In particular, denoting by $\omega_K$ the number of roots of unity in $K$, we show that for lattices of large enough dimension the moments of the number of $\omega_K$-tuples of lattice points converge to those of a Poisson distribution of mean $V/\omega_K$. This extends work of Rogers for $\mathbb{Z}$-lattices. What is more, we show that this convergence can also be achieved by increasing the degree of the number field $K$ as long as $K$ varies within a set of number fields with uniform lower bounds on the absolute Weil height of non-torsion elements.
- Carl L. Siegel. A mean value theorem in geometry of numbers. Ann. of Math. (2), 46(2):340–347, 1945.
- Edmund Hlawka. Zur Geometrie der Zahlen. Math. Z., 49(1):285–312, 1943.
- Stephanie Vance. Improved sphere packing lower bounds from Hurwitz lattices. Adv. Math., 227(5):2144–2156, 2011.
- Akshay Venkatesh. A note on sphere packings in high dimension. Int. Math. Res. Not. IMRN, 2013(7):1628–1642, 2013.
- Nihar P. Gargava. Lattice packings through division algebras. Math. Z., 303(1):1–32, 2023.
- Claude A. Rogers. The moments of the number of points of a lattice in a bounded set. Philos. Trans. Roy. Soc. A, 248(945):225–251, 1955.
- Claude A. Rogers. Mean values over the space of lattices. Acta Math., 94:249–287, 1955.
- Claude A. Rogers. The number of lattice points in a set. Proc. Lond. Math. Soc. (3), 6(2):305–320, 1956.
- Seungki Kim. Adelic Rogers integral formula. arXiv:2205.03138, 2022.
- André Weil. Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math., 113:1–87, 1965.
- Nathan Hughes. Mean values over lattices in number fields and effective Diophantine approximation. arXiv:2306.02499, 2023.
- Claude A. Rogers. Lattice coverings of space: the Minkowski–Hlawka theorem. Proc. Lond. Math. Soc. (3), 8(3):447–465, 1958.
- New bounds on the density of lattice coverings. J. Amer. Math. Soc., 35(1):295–308, 2022.
- Logarithm laws for flows on homogeneous spaces. Invent. Math., 138:451–494, 1998.
- Logarithm laws for unipotent flows, I. J. Mod. Dyn., 3(3):359–378, 2009.
- Poisson approximation and Weibull asymptotics in the geometry of numbers. Trans. Amer. Math. Soc., 376(3):2155–2180, 2023.
- Two central limit theorems in Diophantine approximation. arXiv:2306.02304, 2023.
- Pseudorandomness of ring-LWE for any ring and modulus. In STOC’17—Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 461–473. ACM, New York, 2017.
- Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time. J. ACM, 68(2):1–26, 2021.
- A fully classical LLL algorithm for modules. Cryptology ePrint Archive, Paper 2022/1356, 2022. https://eprint.iacr.org/2022/1356.
- Wolfgang M. Schmidt. On heights of algebraic subspaces and Diophantine approximations. Ann. of Math. (2), 85(3):430–472, 1967.
- Application of automorphic forms to lattice problems. J. Math. Crypt., 16(1):156–197, 2022.
- Andrzej Schinzel. On the product of the conjugates outside the unit circle of an algebraic number. Acta Arith., 24(4):385–399, 1973.
- A lower bound for the height in abelian extensions. J. Number Theory, 80(2):260–272, 2000.
- Around the Unit Circle: Mahler Measure, Integer Matrices and Roots of Unity. Universitext. Springer International Publishing, 2021.
- On fields with Property (B). Proc. Amer. Math. Soc., 142(6):1893–1910, 2014.
- Michel Langevin. Minorations de la maison et de la mesure de Mahler de certains entiers algébriques. C. R. Acad. Sci. Paris Sér. I Math., 303(12):523–526, 1986.
- Lukas Pottmeyer. Small totally p𝑝pitalic_p-adic algebraic numbers. Int. J. Number Theory, 14(10):2687–2697, 2018.
- A note on heights in certain infinite extensions of ℚℚ\mathbb{Q}blackboard_Q. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 12(1):5–14, 2001.
- Philipp Habegger. Small height and infinite nonabelian extensions. Duke Math. J., 162(11):2027–2076, 2013.
- Edward Dobrowolski. On a question of Lehmer and the number of irreducible factors of a polynomial. Acta Arith., 34(4):391–401, 1979.
- Paul Voutier. An effective lower bound for the height of algebraic numbers. Acta Arith., 74(1):81–95, 1996.
- Thomas Ange. Le théorème de Schanuel dans les fibrés adéliques Hermitiens. Manuscripta Math., 144(3-4):565–608, 2014.
- David W. Boyd. Variations on a theme of Kronecker. Canad. Math. Bull., 21(2):129–133, 1978.
- Claude A. Rogers. Two integral inequalities. J. Lond. Math. Soc., 31(2):235–238, 1956.
- André Weil. Discontinuous subgroups of classical groups: lectures. University of Chicago, 1958.
- Armand Borel. Introduction to arithmetic groups, volume 73. American Mathematical Soc., 2019.
- Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. of Math, 75(3):485–535, 1962.