Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning for Sampling on Temporal Medical Imaging Sequences (2308.14946v1)

Published 28 Aug 2023 in cs.LG and eess.IV

Abstract: Accelerated magnetic resonance imaging resorts to either Fourier-domain subsampling or better reconstruction algorithms to deal with fewer measurements while still generating medical images of high quality. Determining the optimal sampling strategy given a fixed reconstruction protocol often has combinatorial complexity. In this work, we apply double deep Q-learning and REINFORCE algorithms to learn the sampling strategy for dynamic image reconstruction. We consider the data in the format of time series, and the reconstruction method is a pre-trained autoencoder-typed neural network. We present a proof of concept that reinforcement learning algorithms are effective to discover the optimal sampling pattern which underlies the pre-trained reconstructor network (i.e., the dynamics in the environment). The code for replicating experiments can be found at https://github.com/zhishenhuang/RLsamp.

Citations (1)

Summary

We haven't generated a summary for this paper yet.