2000 character limit reached
Reverse Carleson measures for Hardy spaces in the unit ball (2308.14860v1)
Published 28 Aug 2023 in math.CV
Abstract: Let $Hp=Hp(B_d)$ denote the Hardy space in the open unit ball $B_d$ of $\mathbb{C}d$, $d\ge 1$. We characterize the reverse Carleson measures for $Hp$, $1<p<\infty$, that is, we describe all finite positive Borel measures $\mu$, defined on the closed ball $\overline{B}_d$, such that \[ \|f \|_{H^p} \le c \|f\|_{L^p(\overline{B}_d,\mu)} \] for all $f\in H^p(B_d) \cap C(\overline{B}_d)$ and a universal constant $c\>0$. Given a non-inner holomorphic function $b: B_d \to B_1$, we obtain properties of the reverse Carleson measures for the de Branges-Rovnyak space $\mathcal{H}(b)$.