Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Artin-Hasse series and Laguerre polynomials modulo a prime (2308.14736v1)

Published 28 Aug 2023 in math.NT

Abstract: For an odd prime $p$, let $\mathrm{E}{p}(X)=\sum{n=0}{\infty} a_{n}X{n}\in\mathbb{F}_p[[X]]$ denote the reduction modulo $p$ of the Artin-Hasse exponential series. It is known that there exists a series $G(Xp)\in \mathbb{F}{p}[[X]]$, such that $L{p-1}{(-T(X))}(X)=\mathrm{E}_{p}(X)\cdot G(Xp)$, where $T(X)=\sum_{i=1}{\infty}X{p{i}}$ and $L_{p-1}{(\alpha)}(X)$ denotes the (generalized) Laguerre polynomial of degree $p-1$. We prove that $G(Xp)=\sum_{n=0}{\infty}(-1)n a_{np}X{np}$, and show that it satisfies $G(Xp)\,G(-Xp)\,T(X)=Xp. $

Citations (1)

Summary

We haven't generated a summary for this paper yet.