Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement Learning (2308.14647v2)

Published 28 Aug 2023 in cs.LG, cs.DC, cs.DM, and math.OC

Abstract: Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to model complex applications from the automotive, avionics, and industrial domains that implement their functionalities through chains of intercommunicating tasks. This paper studies the problem of scheduling real-time DAG tasks by presenting a novel schedulability test based on the concept of trivial schedulability. Using this schedulability test, we propose a new DAG scheduling framework (edge generation scheduling -- EGS) that attempts to minimize the DAG width by iteratively generating edges while guaranteeing the deadline constraint. We study how to efficiently solve the problem of generating edges by developing a deep reinforcement learning algorithm combined with a graph representation neural network to learn an efficient edge generation policy for EGS. We evaluate the effectiveness of the proposed algorithm by comparing it with state-of-the-art DAG scheduling heuristics and an optimal mixed-integer linear programming baseline. Experimental results show that the proposed algorithm outperforms the state-of-the-art by requiring fewer processors to schedule the same DAG tasks. The code is available at https://github.com/binqi-sun/egs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini, “Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm,” in Euromicro Conference on Real-Time Systems (ECRTS), vol. 231, 2022, pp. 1:1–1:15.
  2. A. Hamann, D. Dasari, F. Wurst, I. Saudo, N. Capodieci, P. Burgio, and M. Bertogna, “WATERS industrial challenge,” in Proceedings of the 10th International Workshop on Analysis Tools and Methodologies for Embedded Real-Time Systems (WATERS), 2019.
  3. M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware generation of single-rate DAGs from multi-rate task sets,” in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2020, pp. 226–238.
  4. J. D. Ullman, “NP-complete scheduling problems,” Journal of Computer and System sciences, vol. 10, no. 3, pp. 384–393, 1975.
  5. M. Verucchi, “A comprehensive analysis of DAG tasks: solutions for modern real-time embedded systems,” Doctoral Dissertation, University of Modena and Reggio Emilia, Italy, 2020.
  6. J. Li, K. Agrawal, and C. Lu, “Parallel real-time scheduling,” in Handbook of Real-Time Computing.   Springer, 2022, pp. 447–467.
  7. M. Verucchi, I. S. Olmedo, and M. Bertogna, “A survey on real-time DAG scheduling, revisiting the global-partitioned infinity war,” Real-Time Systems, vol. 59, no. 3, pp. 479–530, 2023.
  8. S. Baruah, “Scheduling DAGs when processor assignments are specified,” in ACM International Conference on Real-Time Networks and Systems (RTNS), 2020, pp. 111–116.
  9. S. Chang, J. Sun, Z. Hao, Q. Deng, and N. Guan, “Computing exact WCRT for typed DAG tasks on heterogeneous multi-core processors,” Journal of Systems Architecture, vol. 124, p. 102385, 2022.
  10. S. Ahmed and J. H. Anderson, “Exact response-time bounds of periodic DAG tasks under server-based global scheduling,” in IEEE Real-Time Systems Symposium (RTSS), 2022, pp. 447–459.
  11. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  12. C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu, “Do transformers really perform badly for graph representation?” Advances in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 28 877–28 888, 2021.
  13. A. Minaeva, D. Roy, B. Akesson, Z. Hanzalek, and S. Chakraborty, “Control performance optimization for application integration on automotive architectures,” IEEE Transactions on Computers, vol. 70, no. 7, pp. 1059–1073, 2021.
  14. AUTOSAR, “Requirements on Timing Extensions,” Standard, 2022. [Online]. Available: https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_RS_TimingExtensions.pdf
  15. ARINC, “Avionics Application Software Standard Interface, Part 0, Overview of ARINC 653,” Standard, 2021. [Online]. Available: https://aviation-ia.sae-itc.com/events/avionics-application-executive-apex-software-subcommittee
  16. S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and A. Wiese, “A generalized parallel task model for recurrent real-time processes,” in IEEE Real-Time Systems Symposium (RTSS), 2012, pp. 63–72.
  17. R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM Journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.
  18. Q. He, N. Guan, Z. Guo et al., “Intra-task priority assignment in real-time scheduling of DAG tasks on multi-cores,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 10, pp. 2283–2295, 2019.
  19. S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang, “DAG scheduling and analysis on multiprocessor systems: Exploitation of parallelism and dependency,” in IEEE Real-Time Systems Symposium (RTSS), 2020, pp. 128–140.
  20. Q. He, M. Lv, and N. Guan, “Response time bounds for DAG tasks with arbitrary intra-task priority assignment,” in Euromicro Conference on Real-Time Systems (ECRTS), 2021, pp. 8:1–8:21.
  21. Q. He, N. Guan, M. Lv, X. Jiang, and W. Chang, “Bounding the response time of DAG tasks using long paths,” in IEEE Real-Time Systems Symposium (RTSS), 2022, pp. 474–486.
  22. V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasibility analysis in the sporadic DAG task model,” in Euromicro Conference on Real-Time Systems (ECRTS), 2013, pp. 225–233.
  23. S. Baruah, “Improved multiprocessor global schedulability analysis of sporadic DAG task systems,” in Euromicro Conference on Real-Time Systems (ECRTS), 2014, pp. 97–105.
  24. J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis of federated and global scheduling for parallel real-time tasks,” in 26th Euromicro Conference on Real-Time Systems (ECRTS), 2014, pp. 85–96.
  25. R. Pathan, P. Voudouris, and P. Stenström, “Scheduling parallel real-time recurrent tasks on multicore platforms,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 4, pp. 915–928, 2018.
  26. Y. Yadlapalli and C. Liu, “LAG-based analysis techniques for scheduling multiprocessor hard real-time sporadic DAGs,” in IEEE Real-Time Systems Symposium (RTSS), 2021, pp. 316–328.
  27. S. Zhao, X. Dai, and I. Bate, “DAG scheduling and analysis on multi-core systems by modelling parallelism and dependency,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 12, pp. 4019–4038, 2022.
  28. S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global edf scheduling of systems of conditional sporadic DAG tasks,” in Euromicro Conference on Real-Time Systems (ECRTS), 2015, pp. 222–231.
  29. A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and G. C. Buttazzo, “Response-time analysis of conditional DAG tasks in multiprocessor systems,” in Euromicro Conference on Real-Time Systems (ECRTS), 2015, pp. 211–221.
  30. N. Ueter, M. Günzel, and J.-J. Chen, “Response-time analysis and optimization for probabilistic conditional parallel DAG tasks,” in IEEE Real-Time Systems Symposium (RTSS), 2021, pp. 380–392.
  31. K. Yang, M. Yang, and J. H. Anderson, “Reducing response-time bounds for DAG-based task systems on heterogeneous multicore platforms,” in ACM International Conference on Real-Time Networks and Systems (RTNS), 2016, pp. 349–358.
  32. S. Chang, X. Zhao, Z. Liu, and Q. Deng, “Real-time scheduling and analysis of parallel tasks on heterogeneous multi-cores,” Journal of Systems Architecture, vol. 105, p. 101704, 2020.
  33. H. Zahaf, N. Capodieci, R. Cavicchioli, G. Lipari, and M. Bertogna, “The HPC-DAG task model for heterogeneous real-time systems,” IEEE Transactions on Computers, vol. 70, no. 10, pp. 1747–1761, 2021.
  34. F. Reghenzani, A. Bhuiyan, W. Fornaciari, and Z. Guo, “A multi-level DPM approach for real-time DAG tasks in heterogeneous processors,” in IEEE Real-Time Systems Symposium (RTSS), 2021, pp. 14–26.
  35. R. Bi, Q. He, J. Sun, Z. Sun, Z. Guo, N. Guan, and G. Tan, “Response time analysis for prioritized DAG task with mutually exclusive vertices,” in IEEE Real-Time Systems Symposium (RTSS), 2022, pp. 460–473.
  36. H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh, “Learning scheduling algorithms for data processing clusters,” in Proceedings of the ACM special interest group on data communication (SIGCOMM), 2019, pp. 270–288.
  37. P. Sun, Z. Guo, J. Wang, J. Li, J. Lan, and Y. Hu, “Deepweave: Accelerating job completion time with deep reinforcement learning-based coflow scheduling,” in International Conference on International Joint Conferences on Artificial Intelligence (IJCAI), 2021, pp. 3314–3320.
  38. H. Lee, S. Cho, Y. Jang, J. Lee, and H. Woo, “A global DAG task scheduler using deep reinforcement learning and graph convolution network,” IEEE Access, vol. 9, pp. 158 548–158 561, 2021.
  39. W. Jeon, M. Gagrani, B. Bartan, W. W. Zeng, H. Teague, P. Zappi, and C. Lott, “Neural DAG scheduling via one-shot priority sampling,” in International Conference on Learning Representations (ICLR), 2023.
  40. R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5, no. 6, p. 345, 1962.
  41. R. Dilworth, “A decomposition theorem for partially ordered sets,” Annals of Mathematics, pp. 161–166, 1950.
  42. J. E. Hopcroft and R. M. Karp, “An n5/2superscript𝑛52n^{5/2}italic_n start_POSTSUPERSCRIPT 5 / 2 end_POSTSUPERSCRIPT algorithm for maximum matchings in bipartite graphs,” SIAM Journal on computing, vol. 2, no. 4, pp. 225–231, 1973.
  43. J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.
  44. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.
Citations (2)

Summary

We haven't generated a summary for this paper yet.