Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-Frequency Transformer: A Novel Time Frequency Joint Learning Method for Speech Emotion Recognition (2308.14568v1)

Published 28 Aug 2023 in cs.SD and eess.AS

Abstract: In this paper, we propose a novel time-frequency joint learning method for speech emotion recognition, called Time-Frequency Transformer. Its advantage is that the Time-Frequency Transformer can excavate global emotion patterns in the time-frequency domain of speech signal while modeling the local emotional correlations in the time domain and frequency domain respectively. For the purpose, we first design a Time Transformer and Frequency Transformer to capture the local emotion patterns between frames and inside frequency bands respectively, so as to ensure the integrity of the emotion information modeling in both time and frequency domains. Then, a Time-Frequency Transformer is proposed to mine the time-frequency emotional correlations through the local time-domain and frequency-domain emotion features for learning more discriminative global speech emotion representation. The whole process is a time-frequency joint learning process implemented by a series of Transformer models. Experiments on IEMOCAP and CASIA databases indicate that our proposed method outdoes the state-of-the-art methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.