Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A variant of the congruent number problem (2308.14381v1)

Published 28 Aug 2023 in math.NT

Abstract: A positive integer $n$ is called a $\theta$-congruent number if there is a triangle with sides $a,b$ and $c$ for which the angle between $a$ and $b$ is equal to $\theta$ and its area is $n\sqrt{r2 - s2}$, where $0 < \theta < \pi$, $\cos \theta = s/r$ and $0 \leq |s| < r$ are relatively prime integers. The case $\theta=\pi/2$ refers to the classical congruent numbers. It is known that the problem of classifying $\theta$-congruent numbers is related to the existence of rational points on the elliptic curve $y2 = x(x+(r+s)n)(x-(r-s)n)$. In this paper, we deal with a variant of the congruent number problem where the cosine of a fixed angle is $\pm \sqrt{2}/2$.

Summary

We haven't generated a summary for this paper yet.