Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Goodhart's Law Applies to NLP's Explanation Benchmarks (2308.14272v1)

Published 28 Aug 2023 in cs.CL and cs.LG

Abstract: Despite the rising popularity of saliency-based explanations, the research community remains at an impasse, facing doubts concerning their purpose, efficacy, and tendency to contradict each other. Seeking to unite the community's efforts around common goals, several recent works have proposed evaluation metrics. In this paper, we critically examine two sets of metrics: the ERASER metrics (comprehensiveness and sufficiency) and the EVAL-X metrics, focusing our inquiry on natural language processing. First, we show that we can inflate a model's comprehensiveness and sufficiency scores dramatically without altering its predictions or explanations on in-distribution test inputs. Our strategy exploits the tendency for extracted explanations and their complements to be "out-of-support" relative to each other and in-distribution inputs. Next, we demonstrate that the EVAL-X metrics can be inflated arbitrarily by a simple method that encodes the label, even though EVAL-X is precisely motivated to address such exploits. Our results raise doubts about the ability of current metrics to guide explainability research, underscoring the need for a broader reassessment of what precisely these metrics are intended to capture.

Citations (5)

Summary

We haven't generated a summary for this paper yet.