Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explaining with Attribute-based and Relational Near Misses: An Interpretable Approach to Distinguishing Facial Expressions of Pain and Disgust (2308.14163v1)

Published 27 Aug 2023 in cs.AI and cs.LG

Abstract: Explaining concepts by contrasting examples is an efficient and convenient way of giving insights into the reasons behind a classification decision. This is of particular interest in decision-critical domains, such as medical diagnostics. One particular challenging use case is to distinguish facial expressions of pain and other states, such as disgust, due to high similarity of manifestation. In this paper, we present an approach for generating contrastive explanations to explain facial expressions of pain and disgust shown in video sequences. We implement and compare two approaches for contrastive explanation generation. The first approach explains a specific pain instance in contrast to the most similar disgust instance(s) based on the occurrence of facial expressions (attributes). The second approach takes into account which temporal relations hold between intervals of facial expressions within a sequence (relations). The input to our explanation generation approach is the output of an interpretable rule-based classifier for pain and disgust.We utilize two different similarity metrics to determine near misses and far misses as contrasting instances. Our results show that near miss explanations are shorter than far miss explanations, independent from the applied similarity metric. The outcome of our evaluation indicates that pain and disgust can be distinguished with the help of temporal relations. We currently plan experiments to evaluate how the explanations help in teaching concepts and how they could be enhanced by further modalities and interaction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.