Multidepot Capacitated Vehicle Routing with Improved Approximation Guarantees (2308.14131v3)
Abstract: The Multidepot Capacitated Vehicle Routing Problem (MCVRP) is a well-known variant of the classic Capacitated Vehicle Routing Problem (CVRP), where we need to route capacitated vehicles located in multiple depots to serve customers' demand such that each vehicle must return to the depot it starts, and the total traveling distance is minimized. There are three variants of MCVRP according to the property of the demand: unit-demand, splittable and unsplittable. We study approximation algorithms for $k$-MCVRP in metric graphs, where $k$ is the capacity of each vehicle. The best-known approximation ratios for the three versions are $4-\Theta(1/k)$, $4-\Theta(1/k)$, and $4$, respectively. We give a $(4-1/1500)$-approximation algorithm for unit-demand and splittable $k$-MCVRP, and a $(4-1/50000)$-approximation algorithm for unsplittable $k$-MCVRP. When $k$ is a fixed integer, we give a $(3+\ln2-\max{\Theta(1/\sqrt{k}),1/9000})$-approximation algorithm for the splittable and unit-demand cases, and a $(3+\ln2-\Theta(1/\sqrt{k}))$-approximation algorithm for the unsplittable case.
- Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: Towards a polynomial time approximation scheme for general k. In: STOC 1997, pp. 275β283 (1997) Haimovich and Kan [1985] Haimovich, M., Kan, A.H.G.R.: Bounds and heuristics for capacitated routing problems. Mathematics of Operations Research 10(4), 527β542 (1985) Altinkemer and Gavish [1987] Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with a fixed error guarantee. Operations Research Letters 6(4), 149β158 (1987) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Haimovich, M., Kan, A.H.G.R.: Bounds and heuristics for capacitated routing problems. Mathematics of Operations Research 10(4), 527β542 (1985) Altinkemer and Gavish [1987] Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with a fixed error guarantee. Operations Research Letters 6(4), 149β158 (1987) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with a fixed error guarantee. Operations Research Letters 6(4), 149β158 (1987) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Haimovich, M., Kan, A.H.G.R.: Bounds and heuristics for capacitated routing problems. Mathematics of Operations Research 10(4), 527β542 (1985) Altinkemer and Gavish [1987] Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with a fixed error guarantee. Operations Research Letters 6(4), 149β158 (1987) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with a fixed error guarantee. Operations Research Letters 6(4), 149β158 (1987) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with a fixed error guarantee. Operations Research Letters 6(4), 149β158 (1987) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon University (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76β79 (1978) Karlin etΒ al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32β45 (2021) Karlin etΒ al. [2023] Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approximation algorithm for metric TSP. In: IPCO 2023. Lecture Notes in Computer Science, vol. 13904, pp. 261β274 (2023) Blauth etΒ al. [2022] Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming, 1β47 (2022) Friggstad etΒ al. [2022] Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for capacitated vehicle routing with unsplittable client demands. In: IPCO 2022. Lecture Notes in Computer Science, vol. 13265, pp. 251β261 (2022) Bompadre etΒ al. [2006] Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optimization 3(4), 299β316 (2006) Zhao and Xiao [2022] Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022) Li and Simchi-Levi [1990] Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated vehicle routing problems. INFORMS Journal on Computing 2(1), 64β73 (1990) Harks etΒ al. [2013] Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Harks, T., KΓΆnig, F.G., Matuschke, J.: Approximation algorithms for capacitated location routing. Transportation Science 47(1), 3β22 (2013) Rathinam etΒ al. [2007] Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering 4(1), 98β104 (2007) Xu etΒ al. [2011] Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Xu, Z., Xu, L., Rodrigues, B.: An analysis of the extended christofides heuristic for the k-depot tsp. Operations Research Letters 39(3), 218β223 (2011) Xu and Rodrigues [2015] Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple tsp with a fixed number of depots. INFORMS Journal on Computing 27(4), 636β645 (2015) Traub etΒ al. [2022] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. SIAM Journal on Computing 51(3), 20β24 (2022) Deppert etΒ al. [2023] Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Deppert, M., Kaul, M., Mnich, M.: A (3/2 + Ξ΅π\varepsilonitalic_Ξ΅)-approximation for multiple TSP with a variable number of depots. In: GΓΈrtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands. LIPIcs, vol. 274, pp. 39β13915 (2023) Chvatal [1979] Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233β235 (1979) Hassin and Levin [2005] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189β200 (2005) Gupta etΒ al. [2023] Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA 2023, pp. 1β11 (2023). SIAM Lai etΒ al. [2023] Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for kπkitalic_k-depot split delivery vehicle routing problem. INFORMS Journal on Computing 35(5), 1179β1194 (2023) Heine etΒ al. [2023] Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location routing with vehicle and facility capacities. European Journal of Operational Research 304(2), 429β442 (2023) Zhao and Xiao [2023] Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Zhao, J., Xiao, M.: Improved approximation algorithms for multidepot capacitated vehicle routing. In: COCOON 2023. Lecture Notes in Computer Science, vol. 14423, pp. 378β391 (2023) Dror and Trudeau [1990] Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37(3), 383β402 (1990) Altinkemer and Gavish [1990] Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error guarantees. Transportation Science 24(4), 294β297 (1990) Williamson and Shmoys [2011] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, (2011) Yu and Liao [2021] Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Yu, W., Liao, Y.: Approximation and polynomial algorithms for multi-depot capacitated arc routing problems. In: PDCAT 2021, pp. 93β100 (2021). Springer
- Jingyang Zhao (13 papers)
- Mingyu Xiao (57 papers)