Ab initio investigation of the $^7$Li($p,e^+e^-$)$^8$Be process and the X17 boson (2308.13751v3)
Abstract: Observations of anomalies in the electron-positron angular correlations in high-energy decays in $4$He, $8$Be, and ${12}$C have been reported recently by the ATOMKI collaboration. These could be explained by the creation and subsequent decay of a new boson with a mass of ${\sim}17$ MeV. Theoretical understanding of pair creation in the proton capture reactions used in these experiments is important for the interpretation of the anomalies. We apply the ab initio No-Core Shell Model with Continuum (NCSMC) to the proton capture on $7$Li. The NCSMC describes both bound and unbound states in light nuclei in a unified way with chiral two- and three-nucleon interactions as the only input. We investigate the structure of $8$Be, the $p+7$Li elastic scattering, the $7$Li($p,\gamma$)$8$Be cross section and the internal pair creation $7$Li($p,e+ e-$)$8$Be. We discuss the impact of a proper treatment of the initial scattering state on the electron-positron angular correlation spectrum and compare our results to available ATOMKI data sets. Finally, we calculate $7$Li($p,X$)$8$Be cross sections for several proposed models of the hypothetical X17 particle.
- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
- F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- CERN NA48/2 collaboration, “Search for the dark photon in $\pi^0$ decays,” (2015), arxiv:1504.00607 [hep-ex] .
- N. J. Sas et al., “Observation of the X17 anomaly in the 77{}^{7}start_FLOATSUPERSCRIPT 7 end_FLOATSUPERSCRIPTLi(p𝑝pitalic_p,e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT)88{}^{8}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPTBe direct proton-capture reaction,” (2022), arXiv:2205.07744 [nucl-ex] .
- A. J. Krasznahorkay, A. Krasznahorkay, M. Csatlós, L. Csige, J. Timár, M. Begala, A. Krakó, I. Rajta, and I. Vajda, “Observation of the X17 anomaly in the decay of the Giant Dipole Resonance of $^8$Be,” (2023), arxiv:2308.06473 [nucl-ex] .
- U. Ellwanger and S. Moretti, Journal of High Energy Physics 2016, 39 (2016).
- D. S. M. Alves, Phys. Rev. D 103, 055018 (2021).
- J. Backens and M. Vanderhaeghen, Phys. Rev. Lett. 128, 091802 (2022).
- A. Aleksejevs, S. Barkanova, Y. G. Kolomensky, and B. Sheff, “A standard model explanation for the ”atomki anomaly”,” (2021), arXiv:2102.01127 [hep-ph] .
- C.-Y. Wong, “Qed meson description of the x17 and other anomalous particles,” (2022), arXiv:2201.09764 [hep-ph] .
- V. Kubarovsky, J. R. West, and S. J. Brodsky, “Quantum chromodynamics resolution of the atomki anomaly in 44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPThe nuclear transitions,” (2022), arXiv:2206.14441 [hep-ph] .
- P. B. Denton and J. Gehrlein, Physical Review D 108, 015009 (2023).
- D. Barducci and C. Toni, Journal of High Energy Physics 2023, 154 (2023), arxiv:2212.06453 [hep-ex, physics:hep-ph] .
- C. J. G. Mommers and M. Vanderhaeghen, “X17 discovery potential from γd→e+e−pn→𝛾𝑑superscript𝑒superscript𝑒𝑝𝑛\gamma d\to e^{+}e^{-}pnitalic_γ italic_d → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_p italic_n with neutron tagging,” (2023), arXiv:2307.02181 [hep-ph] .
- E. Depero, Y. M. Andreev, D. Banerjee, J. Bernhard, V. Burtsev, A. Chumakov, D. Cooke, A. Dermenev, S. Donskov, R. Dusaev, T. Enik, N. Charitonidis, A. Feshchenko, V. Frolov, A. Gardikiotis, S. Gerassimov, S. Girod, S. Gninenko, M. Hosgen, V. Kachanov, A. Karneyeu, G. Kekelidze, B. Ketzer, D. Kirpichnikov, M. Kirsanov, V. Kolosov, I. Konorov, S. Kovalenko, V. Kramarenko, L. Kravchuk, N. Krasnikov, S. Kuleshov, V. Lyubovitskij, V. Lysan, V. Matveev, Y. Mikhailov, L. M. Bueno, D. Peshekhonov, V. Polyakov, B. Radics, R. Rojas, A. Rubbia, V. Samoylenko, D. Shchukin, H. Sieber, V. Tikhomirov, I. Tlisova, D. Tlisov, A. Toropin, A. Trifonov, B. Vasilishin, G. Vasquez, P. Volkov, V. Volkov, P. Ulloa, and P. Crivelli, “Hunting down the X17 boson at the CERN SPS,” (2020), arxiv:2009.02756 [hep-ex, physics:physics] .
- X. Zhang and G. A. Miller, Physics Letters B 773, 159 (2017).
- K. Kravvaris, S. Quaglioni, G. Hupin, and P. Navrátil, “Ab initio framework for nuclear scattering and reactions induced by light projectiles,” (2020), arXiv:2012.00228 [nucl-th] .
- P. Descouvemont and D. Baye, Rep. Prog. Phys. 73, 036301 (2010).
- D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
- P. Navrátil, Few-Body Syst. 41, 117 (2007).
- F. Wegner, Ann. Phys. 506, 77 (1994).
- J. D. Walecka, Theoretical Nuclear and Subnuclear Physics, 2nd ed. (World Scientific, Singapore, 2004).
- J. D. Walecka, Phys. Rev. 126, 653 (1962).
- J. Friar, Annals of Physics 95, 170 (1975).
- T. J. de Forest and J. D. Walecka, Advances in Physics: A Quarterly Supplement of the Philosophical Magazine 15, 1 (1966).
- J. D. Walecka, Electron Scattering for Nuclear and Nucleon Structure (Cambridge University Press, Cambridge, UK, 2001).
- X. Zhang and G. A. Miller, Physics Letters B 813, 136061 (2021).
- T. W. Donnelly and J. D. Walecka, Annual review of nuclear science 25, 329 (1975).
- D. J. Griffiths, Introduction to Elementary Particles, 2nd ed. (Wiley-VCH, Weinheim, Germany, 2008).
- M. Jacob and G. C. Wick, Annals of physics 281, 774 (2000).
- A property of spherical tensor operators: ℛ𝒪jmℛ†=∑m′𝒪jm′Dm′mj.ℛsubscript𝒪𝑗𝑚superscriptℛ†subscriptsuperscript𝑚′subscript𝒪𝑗superscript𝑚′subscriptsuperscript𝐷𝑗superscript𝑚′𝑚\mathcal{R}\mathcal{O}_{jm}\mathcal{R}^{\dagger}=\sum_{m^{\prime}}\mathcal{O}_% {jm^{\prime}}D^{j}_{m^{\prime}m}\;.caligraphic_R caligraphic_O start_POSTSUBSCRIPT italic_j italic_m end_POSTSUBSCRIPT caligraphic_R start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_j italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_m end_POSTSUBSCRIPT . .
- The product of D𝐷Ditalic_D and D*superscript𝐷D^{*}italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is a D𝐷Ditalic_D matrix: DmkjDm′k′j′*=superscriptsubscript𝐷𝑚𝑘𝑗superscriptsubscript𝐷superscript𝑚′superscript𝑘′superscript𝑗′absent\displaystyle D_{mk}^{j}D_{m^{\prime}k^{\prime}}^{j^{\prime}*}=italic_D start_POSTSUBSCRIPT italic_m italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = ∑J=|j−j′|j+j′(−)m′−k′(jmj′−m′|J(m−m′))superscriptsubscript𝐽𝑗superscript𝑗′𝑗superscript𝑗′superscriptsuperscript𝑚′superscript𝑘′𝑗𝑚superscript𝑗′conditionalsuperscript𝑚′𝐽𝑚superscript𝑚′\displaystyle\sum_{J=\left|j-j^{\prime}\right|}^{j+j^{\prime}}\left(-\right)^{% m^{\prime}-k^{\prime}}\left(jmj^{\prime}-m^{\prime}|J(m-m^{\prime})\right)∑ start_POSTSUBSCRIPT italic_J = | italic_j - italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j + italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( - ) start_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_j italic_m italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | italic_J ( italic_m - italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) ×(jkj′−k′|J(k−k′))D(m−m′)(k−k′)Jabsent𝑗𝑘superscript𝑗′conditionalsuperscript𝑘′𝐽𝑘superscript𝑘′superscriptsubscript𝐷𝑚superscript𝑚′𝑘superscript𝑘′𝐽\displaystyle\times\left(jkj^{\prime}-k^{\prime}|J(k-k^{\prime})\right)D_{(m-m% ^{\prime})(k-k^{\prime})}^{J}× ( italic_j italic_k italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | italic_J ( italic_k - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) italic_D start_POSTSUBSCRIPT ( italic_m - italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ( italic_k - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_J end_POSTSUPERSCRIPT .
- (j1m1j2m2|jm)=(−)j1−m1j^j^2(jmj1−m1|j2m2)conditionalsubscript𝑗1subscript𝑚1subscript𝑗2subscript𝑚2𝑗𝑚superscriptsubscript𝑗1subscript𝑚1^𝑗subscript^𝑗2𝑗𝑚subscript𝑗1conditionalsubscript𝑚1subscript𝑗2subscript𝑚2\left(j_{1}m_{1}j_{2}m_{2}|jm\right)=\left(-\right)^{j_{1}-m_{1}}\frac{\hat{j}% }{\hat{j}_{2}}\left(jmj_{1}-m_{1}|j_{2}m_{2}\right)( italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | italic_j italic_m ) = ( - ) start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG over^ start_ARG italic_j end_ARG end_ARG start_ARG over^ start_ARG italic_j end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ( italic_j italic_m italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .
- (−)j1+j2+j3+jj12^j23^{j1j2j12j3jj23}(j1m1j23m23|jm)=superscriptsubscript𝑗1subscript𝑗2subscript𝑗3𝑗^subscript𝑗12^subscript𝑗23subscript𝑗1subscript𝑗2subscript𝑗12subscript𝑗3𝑗subscript𝑗23conditionalsubscript𝑗1subscript𝑚1subscript𝑗23subscript𝑚23𝑗𝑚absent\displaystyle\left(-\right)^{j_{1}+j_{2}+j_{3}+j}\hat{j_{12}}\hat{j_{23}}\left% \{\begin{array}[]{ccc}j_{1}&j_{2}&j_{12}\\ j_{3}&j&j_{23}\end{array}\right\}\left(j_{1}m_{1}j_{23}m_{23}|jm\right)=( - ) start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_j end_POSTSUPERSCRIPT over^ start_ARG italic_j start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_ARG over^ start_ARG italic_j start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT end_ARG { start_ARRAY start_ROW start_CELL italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL italic_j start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL start_CELL italic_j end_CELL start_CELL italic_j start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY } ( italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT | italic_j italic_m ) = ∑m2(j1m1j2m2|j12m12)(j12m12j3m3|jm)(j2m2j3m3|j23m23)subscriptsubscript𝑚2conditionalsubscript𝑗1subscript𝑚1subscript𝑗2subscript𝑚2subscript𝑗12subscript𝑚12conditionalsubscript𝑗12subscript𝑚12subscript𝑗3subscript𝑚3𝑗𝑚conditionalsubscript𝑗2subscript𝑚2subscript𝑗3subscript𝑚3subscript𝑗23subscript𝑚23\displaystyle\sum_{m_{2}}\left(j_{1}m_{1}j_{2}m_{2}|j_{12}m_{12}\right)\left(j% _{12}m_{12}j_{3}m_{3}|jm\right)\left(j_{2}m_{2}j_{3}m_{3}|j_{23}m_{23}\right)∑ start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | italic_j start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) ( italic_j start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT | italic_j italic_m ) ( italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT | italic_j start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT ) .
- P. Descouvemont, Theoretical Models for Nuclear Astrophysics (Nova Science, Hauppauge NY, 2003).