Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ab initio investigation of the $^7$Li($p,e^+e^-$)$^8$Be process and the X17 boson (2308.13751v3)

Published 26 Aug 2023 in nucl-th, hep-ph, and nucl-ex

Abstract: Observations of anomalies in the electron-positron angular correlations in high-energy decays in $4$He, $8$Be, and ${12}$C have been reported recently by the ATOMKI collaboration. These could be explained by the creation and subsequent decay of a new boson with a mass of ${\sim}17$ MeV. Theoretical understanding of pair creation in the proton capture reactions used in these experiments is important for the interpretation of the anomalies. We apply the ab initio No-Core Shell Model with Continuum (NCSMC) to the proton capture on $7$Li. The NCSMC describes both bound and unbound states in light nuclei in a unified way with chiral two- and three-nucleon interactions as the only input. We investigate the structure of $8$Be, the $p+7$Li elastic scattering, the $7$Li($p,\gamma$)$8$Be cross section and the internal pair creation $7$Li($p,e+ e-$)$8$Be. We discuss the impact of a proper treatment of the initial scattering state on the electron-positron angular correlation spectrum and compare our results to available ATOMKI data sets. Finally, we calculate $7$Li($p,X$)$8$Be cross sections for several proposed models of the hypothetical X17 particle.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
  2. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
  3. CERN NA48/2 collaboration, “Search for the dark photon in $\pi^0$ decays,”  (2015), arxiv:1504.00607 [hep-ex] .
  4. N. J. Sas et al., “Observation of the X17 anomaly in the 77{}^{7}start_FLOATSUPERSCRIPT 7 end_FLOATSUPERSCRIPTLi(p𝑝pitalic_p,e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT)88{}^{8}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPTBe direct proton-capture reaction,”  (2022), arXiv:2205.07744 [nucl-ex] .
  5. A. J. Krasznahorkay, A. Krasznahorkay, M. Csatlós, L. Csige, J. Timár, M. Begala, A. Krakó, I. Rajta,  and I. Vajda, “Observation of the X17 anomaly in the decay of the Giant Dipole Resonance of $^8$Be,”  (2023), arxiv:2308.06473 [nucl-ex] .
  6. U. Ellwanger and S. Moretti, Journal of High Energy Physics 2016, 39 (2016).
  7. D. S. M. Alves, Phys. Rev. D 103, 055018 (2021).
  8. J. Backens and M. Vanderhaeghen, Phys. Rev. Lett. 128, 091802 (2022).
  9. A. Aleksejevs, S. Barkanova, Y. G. Kolomensky,  and B. Sheff, “A standard model explanation for the ”atomki anomaly”,”  (2021), arXiv:2102.01127 [hep-ph] .
  10. C.-Y. Wong, “Qed meson description of the x17 and other anomalous particles,”  (2022), arXiv:2201.09764 [hep-ph] .
  11. V. Kubarovsky, J. R. West,  and S. J. Brodsky, “Quantum chromodynamics resolution of the atomki anomaly in 44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPThe nuclear transitions,”  (2022), arXiv:2206.14441 [hep-ph] .
  12. P. B. Denton and J. Gehrlein, Physical Review D 108, 015009 (2023).
  13. D. Barducci and C. Toni, Journal of High Energy Physics 2023, 154 (2023), arxiv:2212.06453 [hep-ex, physics:hep-ph] .
  14. C. J. G. Mommers and M. Vanderhaeghen, “X17 discovery potential from γ⁢d→e+⁢e−⁢p⁢n→𝛾𝑑superscript𝑒superscript𝑒𝑝𝑛\gamma d\to e^{+}e^{-}pnitalic_γ italic_d → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_p italic_n with neutron tagging,”  (2023), arXiv:2307.02181 [hep-ph] .
  15. E. Depero, Y. M. Andreev, D. Banerjee, J. Bernhard, V. Burtsev, A. Chumakov, D. Cooke, A. Dermenev, S. Donskov, R. Dusaev, T. Enik, N. Charitonidis, A. Feshchenko, V. Frolov, A. Gardikiotis, S. Gerassimov, S. Girod, S. Gninenko, M. Hosgen, V. Kachanov, A. Karneyeu, G. Kekelidze, B. Ketzer, D. Kirpichnikov, M. Kirsanov, V. Kolosov, I. Konorov, S. Kovalenko, V. Kramarenko, L. Kravchuk, N. Krasnikov, S. Kuleshov, V. Lyubovitskij, V. Lysan, V. Matveev, Y. Mikhailov, L. M. Bueno, D. Peshekhonov, V. Polyakov, B. Radics, R. Rojas, A. Rubbia, V. Samoylenko, D. Shchukin, H. Sieber, V. Tikhomirov, I. Tlisova, D. Tlisov, A. Toropin, A. Trifonov, B. Vasilishin, G. Vasquez, P. Volkov, V. Volkov, P. Ulloa,  and P. Crivelli, “Hunting down the X17 boson at the CERN SPS,”  (2020), arxiv:2009.02756 [hep-ex, physics:physics] .
  16. X. Zhang and G. A. Miller, Physics Letters B 773, 159 (2017).
  17. K. Kravvaris, S. Quaglioni, G. Hupin,  and P. Navrátil, “Ab initio framework for nuclear scattering and reactions induced by light projectiles,”  (2020), arXiv:2012.00228 [nucl-th] .
  18. P. Descouvemont and D. Baye, Rep. Prog. Phys. 73, 036301 (2010).
  19. D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
  20. P. Navrátil, Few-Body Syst. 41, 117 (2007).
  21. F. Wegner, Ann. Phys. 506, 77 (1994).
  22. J. D. Walecka, Theoretical Nuclear and Subnuclear Physics, 2nd ed. (World Scientific, Singapore, 2004).
  23. J. D. Walecka, Phys. Rev. 126, 653 (1962).
  24. J. Friar, Annals of Physics 95, 170 (1975).
  25. T. J. de Forest and J. D. Walecka, Advances in Physics: A Quarterly Supplement of the Philosophical Magazine 15, 1 (1966).
  26. J. D. Walecka, Electron Scattering for Nuclear and Nucleon Structure (Cambridge University Press, Cambridge, UK, 2001).
  27. X. Zhang and G. A. Miller, Physics Letters B 813, 136061 (2021).
  28. T. W. Donnelly and J. D. Walecka, Annual review of nuclear science 25, 329 (1975).
  29. D. J. Griffiths, Introduction to Elementary Particles, 2nd ed. (Wiley-VCH, Weinheim, Germany, 2008).
  30. M. Jacob and G. C. Wick, Annals of physics 281, 774 (2000).
  31. A property of spherical tensor operators: ℛ⁢𝒪j⁢m⁢ℛ†=∑m′𝒪j⁢m′⁢Dm′⁢mj.ℛsubscript𝒪𝑗𝑚superscriptℛ†subscriptsuperscript𝑚′subscript𝒪𝑗superscript𝑚′subscriptsuperscript𝐷𝑗superscript𝑚′𝑚\mathcal{R}\mathcal{O}_{jm}\mathcal{R}^{\dagger}=\sum_{m^{\prime}}\mathcal{O}_% {jm^{\prime}}D^{j}_{m^{\prime}m}\;.caligraphic_R caligraphic_O start_POSTSUBSCRIPT italic_j italic_m end_POSTSUBSCRIPT caligraphic_R start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_j italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_m end_POSTSUBSCRIPT . .
  32. The product of D𝐷Ditalic_D and D*superscript𝐷D^{*}italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is a D𝐷Ditalic_D matrix: Dm⁢kj⁢Dm′⁢k′j′⁣*=superscriptsubscript𝐷𝑚𝑘𝑗superscriptsubscript𝐷superscript𝑚′superscript𝑘′superscript𝑗′absent\displaystyle D_{mk}^{j}D_{m^{\prime}k^{\prime}}^{j^{\prime}*}=italic_D start_POSTSUBSCRIPT italic_m italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = ∑J=|j−j′|j+j′(−)m′−k′⁢(j⁢m⁢j′−m′|J⁢(m−m′))superscriptsubscript𝐽𝑗superscript𝑗′𝑗superscript𝑗′superscriptsuperscript𝑚′superscript𝑘′𝑗𝑚superscript𝑗′conditionalsuperscript𝑚′𝐽𝑚superscript𝑚′\displaystyle\sum_{J=\left|j-j^{\prime}\right|}^{j+j^{\prime}}\left(-\right)^{% m^{\prime}-k^{\prime}}\left(jmj^{\prime}-m^{\prime}|J(m-m^{\prime})\right)∑ start_POSTSUBSCRIPT italic_J = | italic_j - italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j + italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( - ) start_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_j italic_m italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | italic_J ( italic_m - italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) ×(j⁢k⁢j′−k′|J⁢(k−k′))⁢D(m−m′)⁢(k−k′)Jabsent𝑗𝑘superscript𝑗′conditionalsuperscript𝑘′𝐽𝑘superscript𝑘′superscriptsubscript𝐷𝑚superscript𝑚′𝑘superscript𝑘′𝐽\displaystyle\times\left(jkj^{\prime}-k^{\prime}|J(k-k^{\prime})\right)D_{(m-m% ^{\prime})(k-k^{\prime})}^{J}× ( italic_j italic_k italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | italic_J ( italic_k - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) italic_D start_POSTSUBSCRIPT ( italic_m - italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ( italic_k - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_J end_POSTSUPERSCRIPT .
  33. (j1⁢m1⁢j2⁢m2|j⁢m)=(−)j1−m1⁢j^j^2⁢(j⁢m⁢j1−m1|j2⁢m2)conditionalsubscript𝑗1subscript𝑚1subscript𝑗2subscript𝑚2𝑗𝑚superscriptsubscript𝑗1subscript𝑚1^𝑗subscript^𝑗2𝑗𝑚subscript𝑗1conditionalsubscript𝑚1subscript𝑗2subscript𝑚2\left(j_{1}m_{1}j_{2}m_{2}|jm\right)=\left(-\right)^{j_{1}-m_{1}}\frac{\hat{j}% }{\hat{j}_{2}}\left(jmj_{1}-m_{1}|j_{2}m_{2}\right)( italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | italic_j italic_m ) = ( - ) start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG over^ start_ARG italic_j end_ARG end_ARG start_ARG over^ start_ARG italic_j end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ( italic_j italic_m italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .
  34. (−)j1+j2+j3+j⁢j12^⁢j23^⁢{j1j2j12j3jj23}⁢(j1⁢m1⁢j23⁢m23|j⁢m)=superscriptsubscript𝑗1subscript𝑗2subscript𝑗3𝑗^subscript𝑗12^subscript𝑗23subscript𝑗1subscript𝑗2subscript𝑗12subscript𝑗3𝑗subscript𝑗23conditionalsubscript𝑗1subscript𝑚1subscript𝑗23subscript𝑚23𝑗𝑚absent\displaystyle\left(-\right)^{j_{1}+j_{2}+j_{3}+j}\hat{j_{12}}\hat{j_{23}}\left% \{\begin{array}[]{ccc}j_{1}&j_{2}&j_{12}\\ j_{3}&j&j_{23}\end{array}\right\}\left(j_{1}m_{1}j_{23}m_{23}|jm\right)=( - ) start_POSTSUPERSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_j end_POSTSUPERSCRIPT over^ start_ARG italic_j start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_ARG over^ start_ARG italic_j start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT end_ARG { start_ARRAY start_ROW start_CELL italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL italic_j start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL start_CELL italic_j end_CELL start_CELL italic_j start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY } ( italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT | italic_j italic_m ) = ∑m2(j1⁢m1⁢j2⁢m2|j12⁢m12)⁢(j12⁢m12⁢j3⁢m3|j⁢m)⁢(j2⁢m2⁢j3⁢m3|j23⁢m23)subscriptsubscript𝑚2conditionalsubscript𝑗1subscript𝑚1subscript𝑗2subscript𝑚2subscript𝑗12subscript𝑚12conditionalsubscript𝑗12subscript𝑚12subscript𝑗3subscript𝑚3𝑗𝑚conditionalsubscript𝑗2subscript𝑚2subscript𝑗3subscript𝑚3subscript𝑗23subscript𝑚23\displaystyle\sum_{m_{2}}\left(j_{1}m_{1}j_{2}m_{2}|j_{12}m_{12}\right)\left(j% _{12}m_{12}j_{3}m_{3}|jm\right)\left(j_{2}m_{2}j_{3}m_{3}|j_{23}m_{23}\right)∑ start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | italic_j start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) ( italic_j start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT | italic_j italic_m ) ( italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT | italic_j start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT ) .
  35. P. Descouvemont, Theoretical Models for Nuclear Astrophysics (Nova Science, Hauppauge NY, 2003).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com