Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe and Quasi-Optimal Autonomous Navigation in Environments with Convex Obstacles (2308.13425v4)

Published 25 Aug 2023 in eess.SY and cs.SY

Abstract: We propose a continuous feedback control strategy that steers a point-mass vehicle safely to a destination, in a quasi-optimal manner, in sphere worlds. The main idea consists in avoiding each obstacle via the shortest path on the cone's surface enclosing the obstacle and moving straight toward the target when the vehicle has a clear line of sight to the target location. In particular, almost global asymptotic stability of the target location is achieved in two-dimensional (2D) environments under a particular assumption on the obstacles configuration. We also propose a reactive (sensor-based) approach, suitable for real-time implementations in a priori unknown 2D environments with sufficiently curved convex obstacles, guaranteeing almost global asymptotic stability of the target location. Simulation results are presented to illustrate the effectiveness of the proposed approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Safe and quasi-optimal autonomous navigation in sphere worlds. In 2023 American Control Conference (ACC), pages 2678–2683, 2023. doi:10.23919/ACC55779.2023.10156634.
  2. Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.
  3. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968. doi:10.1109/TSSC.1968.300136.
  4. V. Lumelsky and A. Stepanov. Dynamic path planning for a mobile automaton with limited information on the environment. IEEE Transactions on Automatic Control, 31(11):1058–1063, 1986. doi:10.1109/TAC.1986.1104175.
  5. V.J. Lumelsky and T. Skewis. Incorporating range sensing in the robot navigation function. IEEE Transactions on Systems, Man, and Cybernetics, 20(5):1058–1069, 1990. doi:10.1109/21.59969.
  6. Oussama Khatib. Real time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1):90–99, 1986.
  7. Robot Navigation Functions on Manifolds with Boundary. ADVANCES IN APPLIED MATHEMATICS, 11:412–442, 1990.
  8. The construction of analytic diffeomorphisms for exact robot navigation on star worlds. Transactions of the American Mathematical Society, 327(1):71–116, 1991.
  9. Exact Robot Navigation Using Artificial Potential Functions. IEEE Transactions on Robotics and Automation, 8(5):501–518, 1992.
  10. S. G. Loizou. The navigation transformation: Point worlds, time abstractions and towards tuning-free navigation. In 2011 19th Mediterranean Conference on Control Automation (MED), pages 303–308, 2011. doi:10.1109/MED.2011.5983166.
  11. Robot navigation on star worlds using a single-step navigation transformation. In 2020 59th IEEE Conference on Decision and Control (CDC), pages 1537–1542, 2020. doi:10.1109/CDC42340.2020.9303745.
  12. Navigation functions for convex potentials in a space with convex obstacles. IEEE Transactions on Automatic Control, 63(9):2944–2959, 2018. doi:10.1109/TAC.2017.2775046.
  13. Correct-by-construction navigation functions with application to sensor based robot navigation, 2021.
  14. Sensor-based reactive navigation in unknown convex sphere worlds. The International Journal of Robotics Research, 38(2-3):196–223, 2019. doi:10.1177/0278364918796267.
  15. Reactive Navigation in Partially Known Non-Convex Environments. In 13th International Workshop on the Algorithmic Foundations of Robotics (WAFR), 2018.
  16. Reactive navigation in partially familiar planar environments using semantic perceptual feedback. ArXiv, abs/2002.08946, 2020.
  17. Mitio Nagumo. Über die lage der integralkurven gewöhnlicher differentialgleichungen. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 24:551–559, 1942. doi:10.11429/ppmsj1919.24.0_551.
  18. Soulaimane Berkane. Navigation in unknown environments using safety velocity cones. In 2021 American Control Conference (ACC), pages 2336–2341, 2021. doi:10.23919/ACC50511.2021.9482911.
  19. Control barrier function based quadratic programs with application to adaptive cruise control. In 53rd IEEE Conference on Decision and Control, pages 6271–6278, 2014. doi:10.1109/CDC.2014.7040372.
  20. Control barrier function based quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):3861–3876, 2017. doi:10.1109/TAC.2016.2638961.
  21. Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected set of points. In 2006 American Control Conference, pages 6 pp.–, 2006. doi:10.1109/ACC.2006.1657236.
  22. Obstacle avoidance via hybrid feedback. IEEE Transactions on Automatic Control, 67(1):512–519, 2022. doi:10.1109/TAC.2021.3086329.
  23. Hybrid feedback for autonomous navigation in planar environments with convex obstacles. IEEE Transactions on Automatic Control, pages 1–16, 2023a. doi:10.1109/TAC.2023.3277884.
  24. A hybrid controller for obstacle avoidance in an n𝑛nitalic_n-dimensional euclidean space. In 2019 18th European Control Conference (ECC), pages 764–769, 2019. doi:10.23919/ECC.2019.8795713.
  25. Set-Theoretic Methods in Control. Birkhäuser Basel, 1st edition, 2007. ISBN 0817632557.
  26. Bouligand Georges. Introduction à la géométrie infinitésimale directe. Librairie Vuibert, Paris, 1932.
  27. Hybrid feedback control design for non-convex obstacle avoidance. arXiv:2304.10598, 2023b.
  28. Jorge Cortes. Discontinuous dynamical systems. IEEE Control Systems Magazine, 28(3):36–73, 2008. doi:10.1109/MCS.2008.919306.
Citations (2)

Summary

We haven't generated a summary for this paper yet.