Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging the Gap: Sketch-Aware Interpolation Network for High-Quality Animation Sketch Inbetweening (2308.13273v2)

Published 25 Aug 2023 in cs.CV and cs.MM

Abstract: Hand-drawn 2D animation workflow is typically initiated with the creation of sketch keyframes. Subsequent manual inbetweens are crafted for smoothness, which is a labor-intensive process and the prospect of automatic animation sketch interpolation has become highly appealing. Yet, common frame interpolation methods are generally hindered by two key issues: 1) limited texture and colour details in sketches, and 2) exaggerated alterations between two sketch keyframes. To overcome these issues, we propose a novel deep learning method - Sketch-Aware Interpolation Network (SAIN). This approach incorporates multi-level guidance that formulates region-level correspondence, stroke-level correspondence and pixel-level dynamics. A multi-stream U-Transformer is then devised to characterize sketch inbetweening patterns using these multi-level guides through the integration of self / cross-attention mechanisms. Additionally, to facilitate future research on animation sketch inbetweening, we constructed a large-scale dataset - STD-12K, comprising 30 sketch animation series in diverse artistic styles. Comprehensive experiments on this dataset convincingly show that our proposed SAIN surpasses the state-of-the-art interpolation methods.

Summary

We haven't generated a summary for this paper yet.